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1 Introduction
This is the second in a series of five manuals:

1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac
platforms.

2. Optimizing subroutines in assembly language: An optimization guide for x86
platforms.

3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for
assembly programmers and compiler makers.

4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA CPUs.

5. Calling conventions for different C++ compilers and operating systems.

The latest versions of these manuals are always available from www.agner.org/optimize.
Copyright conditions are listed on page 170 below.

The present manual explains how to combine assembly code with a high level programming
language and how to optimize CPU-intensive code for speed by using assembly code.

This manual is intended for advanced assembly programmers and compiler makers. It is
assumed that the reader has a good understanding of assembly language and some
experience with assembly coding. Beginners are advised to seek information elsewhere and
get some programming experience before trying the optimization techniques described
here. | can recommend the various introductions, tutorials, discussion forums and
newsgroups on the Internet (see links from www.agner.org/optimize) and the book
"Introduction to 80x86 Assembly Language and Computer Architecture" by R. C. Detmer, 2.
ed. 2006.

The present manual covers all platforms that use the x86 and x86-64 instruction set. This
instruction set is used by most microprocessors from Intel, AMD and VIA. Operating
systems that can use this instruction set include DOS, Windows, Linux, FreeBSD/Open
BSD, and Intel-based Mac OS. The manual covers the newest microprocessors and the
newest instruction sets. See manual 3 and 4 for details about individual microprocessor
models.

Optimization techniques that are not specific to assembly language are discussed in manual
1: "Optimizing software in C++". Details that are specific to a particular microprocessor are
covered by manual 3: "The microarchitecture of Intel, AMD and VIA CPUs". Tables of
instruction timings etc. are provided in manual 4: "Instruction tables: Lists of instruction
latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs".
Details about calling conventions for different operating systems and compilers are covered
in manual 5: "Calling conventions for different C++ compilers and operating systems".

Programming in assembly language is much more difficult than high-level language. Making
bugs is very easy, and finding them is very difficult. Now you have been warned! Please
don't send your programming questions to me. Such mails will not be answered. There are
various discussion forums on the Internet where you can get answers to your programming
questions if you cannot find the answers in the relevant books and manuals.

Good luck with your hunt for nanoseconds!


http://www.agner.org/optimize
http://www.agner.org/optimize

1.1 Reasons for using assembly code

Assembly coding is not used as much today as previously. However, there are still reasons
for learning and using assembly code. The main reasons are:

1. Educational reasons. It is important to know how microprocessors and compilers
work at the instruction level in order to be able to predict which coding techniques
are most efficient, to understand how various constructs in high level languages
work, and to track hard-to-find errors.

2. Debugging and verifying. Looking at compiler-generated assembly code or the
disassembly window in a debugger is useful for finding errors and for checking how
well a compiler optimizes a particular piece of code.

3. Making compilers. Understanding assembly coding techniques is necessary for
making compilers, debuggers and other development tools.

4. Embedded systems. Small embedded systems have fewer resources than PC's and
mainframes. Assembly programming can be necessary for optimizing code for speed
or size in small embedded systems.

5. Hardware drivers and system code. Accessing hardware, system control registers
etc. may sometimes be difficult or impossible with high level code.

6. Accessing instructions that are not accessible from high level language. Certain
assembly instructions have no high-level language equivalent.

7. Self-modifying code. Self-modifying code is generally not profitable because it
interferes with efficient code caching. It may, however, be advantageous for example
to include a small compiler in math programs where a user-defined function has to
be calculated many times.

8. Optimizing code for size. Storage space and memory is so cheap nowadays that it is
not worth the effort to use assembly language for reducing code size. However,
cache size is still such a critical resource that it may be useful in some cases to
optimize a critical piece of code for size in order to make it fit into the code cache.

9. Optimizing code for speed. Modern C++ compilers generally optimize code quite well
in most cases. But there are still cases where compilers perform poorly and where
dramatic increases in speed can be achieved by careful assembly programming.

10. Function libraries. The total benefit of optimizing code is higher in function libraries
that are used by many programmers.

11. Making function libraries compatible with multiple compilers and operating systems.
It is possible to make library functions with multiple entries that are compatible with
different compilers and different operating systems. This requires assembly
programming.

The main focus in this manual is on optimizing code for speed, though some of the other
topics are also discussed.

1.2 Reasons for not using assembly code

There are so many disadvantages and problems involved in assembly programming that it
is advisable to consider the alternatives before deciding to use assembly code for a
particular task. The most important reasons for not using assembly programming are:



1. Development time. Writing code in assembly language takes much longer time than
in a high level language.

2. Reliability and security. It is easy to make errors in assembly code. The assembler is
not checking if the calling conventions and register save conventions are obeyed.
Nobody is checking for you if the number of pusH and pop instructions is the same in
all possible branches and paths. There are so many possibilities for hidden errors in
assembly code that it affects the reliability and security of the project unless you
have a very systematic approach to testing and verifying.

3. Debugging and verifying. Assembly code is more difficult to debug and verify
because there are more possibilities for errors than in high level code.

4. Maintainability. Assembly code is more difficult to modify and maintain because the
language allows unstructured spaghetti code and all kinds of dirty tricks that are
difficult for others to understand. Thorough documentation and a consistent
programming style is needed.

5. System code can use intrinsic functions instead of assembly. The best modern C++
compilers have intrinsic functions for accessing system control registers and other
system instructions. Assembly code is no longer needed for device drivers and other
system code when intrinsic functions are available.

6. Application code can use intrinsic functions or vector classes instead of assembly.
The best modern C++ compilers have intrinsic functions for vector operations and
other special instructions that previously required assembly programming. It is no
longer necessary to use old fashioned assembly code to take advantage of the
Single-Instruction-Multiple-Data (SIMD) instructions. See page 34.

7. Portability. Assembly code is very platform-specific. Porting to a different platform is
difficult. Code that uses intrinsic functions instead of assembly are portable to all x86
and x86-64 platforms.

8. Compilers have been improved a lot in recent years. The best compilers are now
better than the average assembly programmer in many situations.

9. Compiled code may be faster than assembly code because compilers can make
inter-procedural optimization and whole-program optimization. The assembly
programmer usually has to make well-defined functions with a well-defined call
interface that obeys all calling conventions in order to make the code testable and
verifiable. This prevents many of the optimization methods that compilers use, such
as function inlining, register allocation, constant propagation, common sub-
expression elimination across functions, scheduling across functions, etc. These
advantages can be obtained by using C++ code with intrinsic functions instead of
assembly code.

1.3 Operating systems covered by this manual
The following operating systems can use x86 family microprocessors:

16 bit: DOS, Windows 3.X.
32 bit: Windows, Linux, FreeBSD, OpenBSD, NetBSD, Intel-based Mac OS X.

64 bit: Windows, Linux, FreeBSD, OpenBSD, NetBSD, Intel-based Mac OS X.



All the UNIX-like operating systems (Linux, BSD, Mac OS) use the same calling
conventions, with very few exceptions. Everything that is said in this manual about Linux
also applies to other UNIX-like systems, possibly including systems not mentioned here.

2 Before you start

2.1 Things to decide before you start programming

Before you start to program in assembly, you have to think about why you want to use
assembly language, which part of your program you need to make in assembly, and what
programming method to use. If you haven't made your development strategy clear, then you
will soon find yourself wasting time optimizing the wrong parts of the program, doing things
in assembly that could have been done in C++, attempting to optimize things that cannot be
optimized further, making spaghetti code that is difficult to maintain, and making code that is
full or errors and difficult to debug.

Here is a checklist of things to consider before you start programming:

Never make the whole program in assembly. That is a waste of time. Assembly code
should be used only where speed is critical and where a significant improvement in
speed can be obtained. Most of the program should be made in C or C++. These are
the programming languages that are most easily combined with assembly code.

If the purpose of using assembly is to make system code or use special instructions
that are not available in standard C++ then you should isolate the part of the
program that needs these instructions in a separate function or class with a well
defined functionality. Use intrinsic functions (see p. 34) if possible.

If the purpose of using assembly is to optimize for speed then you have to identify
the part of the program that consumes the most CPU time, possibly with the use of a
profiler. Check if the bottleneck is file access, memory access, CPU instructions, or
something else, as described in manual 1: "Optimizing software in C++". Isolate the
critical part of the program into a function or class with a well-defined functionality.

If the purpose of using assembly is to make a function library then you should clearly
define the functionality of the library. Decide whether to make a function library or a
class library. Decide whether to use static linking (. 1ib in Windows, . a in Linux) or
dynamic linking (.d11 in Windows, . so in Linux). Static linking is usually more
efficient, but dynamic linking may be necessary if the library is called from languages
such as C# and Visual Basic. You may possibly make both a static and a dynamic
link version of the library.

If the purpose of using assembly is to optimize an embedded application for size or
speed then find a development tool that supports both C/C++ and assembly and
make as much as possible in C or C++.

Decide if the code is reusable or application-specific. Spending time on careful
optimization is more justified if the code is reusable. A reusable code is most
appropriately implemented as a function library or class library.

Decide if the code should support multithreading. A multithreading application can
take advantage of microprocessors with multiple cores. Any data that must be
preserved from one function call to the next on a per-thread basis should be stored
in a C++ class or a per-thread buffer supplied by the calling program.



o Decide if portability is important for your application. Should the application work in
both Windows, Linux and Intel-based Mac OS? Should it work in both 32 bit and 64
bit mode? Should it work on non-x86 platforms? This is important for the choice of
compiler, assembler and programming method.

¢ Decide if your application should work on old microprocessors. If so, then you may
make one version for microprocessors with, for example, the SSE2 instruction set,
and another version which is compatible with old microprocessors. You may even
make several versions, each optimized for a particular CPU. It is recommended to
make automatic CPU dispatching (see page 143).

e There are three assembly programming methods to choose between: (1) Use
intrinsic functions and vector classes in a C++ compiler. (2) Use inline assembly in a
C++ compiler. (3) Use an assembler. These three methods and their relative
advantages and disadvantages are described in chapter 5, 6 and 7 respectively
(page 34, 36 and 45 respectively).

e If you are using an assembler then you have to choose between different syntax
dialects. It may be preferred to use an assembler that is compatible with the
assembly code that your C++ compiler can generate.

e Make your code in C++ first and optimize it as much as you can, using the methods
described in manual 1: "Optimizing software in C++". Make the compiler translate
the code to assembly. Look at the compiler-generated code and see if there are any
possibilities for improvement in the code.

¢ Highly optimized code tends to be very difficult to read and understand for others
and even for yourself when you get back to it after some time. In order to make it
possible to maintain the code, it is important that you organize it into small logical
units (procedures or macros) with a well-defined interface and calling convention and
appropriate comments. Decide on a consistent strategy for code comments and
documentation.

e Save the compiler, assembler and all other development tools together with the
source code and project files for later maintenance. Compatible tools may not be
available in a few years when updates and modifications in the code are needed.

2.2 Make a test strategy

Assembly code is error prone, difficult to debug, difficult to make in a clearly structured way,
difficult to read, and difficult to maintain, as | have already mentioned. A consistent test
strategy can ameliorate some of these problems and save you a lot of time.

My recommendation is to make the assembly code as an isolated module, function, class or
library with a well-defined interface to the calling program. Make it all in C++ first. Then
make a test program which can test all aspects of the code you want to optimize. It is easier
and safer to use a test program than to test the module in the final application.

The test program has two purposes. The first purpose is to verify that the assembly code
works correctly in all situations. And the second purpose is to test the speed of the
assembly code without invoking the user interface, file access and other parts of the final
application program that may make the speed measurements less accurate and less
reproducible.

You should use the test program repeatedly after each step in the development process and
after each modification of the code.



Make sure the test program works correctly. It is quite common to spend a lot of time
looking for an error in the code under test when in fact the error is in the test program.

There are different test methods that can be used for verifying that the code works correctly.
A white box test supplies a carefully chosen series of different sets of input data to make
sure that all branches, paths and special cases in the code are tested. A black box test
supplies a series of random input data and verifies that the output is correct. A very long
series of random data from a good random number generator can sometimes find rarely
occurring errors that the white box test hasn't found.

The test program may compare the output of the assembly code with the output of a C++
implementation to verify that it is correct. The test should cover all boundary cases and
preferably also illegal input data to see if the code generates the correct error responses.

The speed test should supply a realistic set of input data. A significant part of the CPU time
may be spent on branch mispredictions in code that contains a lot of branches. The amount
of branch mispredictions depends on the degree of randomness in the input data. You may
experiment with the degree of randomness in the input data to see how much it influences
the computation time, and then decide on a realistic degree of randomness that matches a
typical real application.

An automatic test program that supplies a long stream of test data will typically find more
errors and find them much faster than testing the code in the final application. A good test
program will find most errors, but you cannot be sure that it finds all errors. It is possible that
some errors show up only in combination with the final application.

2.3 Common coding pitfalls

The following list points out some of the most common programming errors in assembly
code.

1. Forgetting to save registers. Some registers have callee-save status, for example
EBX. These registers must be saved in the prolog of a function and restored in the
epilog if they are modified inside the function. Remember that the order of por
instructions must be the opposite of the order of pusH instructions. See page 28 for a
list of callee-save registers.

2. Unmatched pusH and pop instructions. The number of pusu and poP instructions
must be equal for all possible paths through a function. Example:

Example 2.1. Unmatched push/pop
push ebx

test ecx, ecx

Jjz Finished

pop ebx

Finished: ; Wrong! Label should be before pop ebx
ret

Here, the value of £Bx that is pushed is not popped again if Ecx is zero. The result is
that the rReT instruction will pop the former value of EBx and jump to a wrong
address.

3. Using a register that is reserved for another purpose. Some compilers reserve the
use of EBP or EBx for a frame pointer or other purpose. Using these registers for a
different purpose in inline assembly can cause errors.



4. Stack-relative addressing after push. When addressing a variable relative to the
stack pointer, you must take into account all preceding instructions that modify the
stack pointer. Example:

Example 2.2. Stack-relative addressing

mov [espt+4], edi

push ebp

push ebx

cmp esi, [esp+4] ; Probably wrong!

Here, the programmer probably intended to compare st with EpI, but the value of
ESP that is used for addressing has been changed by the two pusH instructions, so
that EsT is in fact compared with EBp instead.

5. Confusing value and address of a variable. Example:

Example 2.3. Value versus address (MASM syntax)

.data

MyVariable DD O ; Define variable

.code

mov eax, MyVariable ; Gets value of MyVariable

mov eax, offset MyVariable; Gets address of MyVariable

lea eax, MyVariable ; Gets address of MyVariable

mov ebx, [eax] ; Gets value of MyVariable through pointer
mov ebx, [100] ; Gets the constant 100 despite brackets

mov ebx, ds:[100] Gets value from address 100

6. Ignoring calling conventions. It is important to observe the calling conventions for
functions, such as the order of parameters, whether parameters are transferred on
the stack or in registers, and whether the stack is cleaned up by the caller or the
called function. See page 27.

7. Function name mangling. A C++ code that calls an assembly function should use
extern "C" to avoid name mangling. Some systems require that an underscore (_)
is put in front of the name in the assembly code. See page 30.

8. Forgetting return. A function declaration must end with both rReT and ExDP. Using
one of these is not enough. The execution will continue in the code after the
procedure if there is no rReT.

9. Forgetting stack alignment. The stack pointer must point to an address divisible by
16 before any call statement, except in 16-bit systems and 32-bit Windows. See
page 27.

10. Forgetting shadow space in 64-bit Windows. It is required to reserve 32 bytes of
empty stack space before any function call in 64-bit Windows. See page 30.

11. Mixing calling conventions. The calling conventions in 64-bit Windows and 64-bit
Linux are different. See page 27.

12. Forgetting to clean up floating point register stack. All floating point stack registers
that are used by a function must be cleared, typically with rsTp sT (0), before the
function returns, except for sT (0) if it is used for return value. It is necessary to keep
track of exactly how many floating point registers are in use. If a functions pushes
more values on the floating point register stack than it pops, then the register stack
will grow each time the function is called. An exception is generated when the stack
is full. This exception may occur somewhere else in the program.
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13. Forgetting to clear MMX state. A function that uses MMX registers must clear these
with the EmMMs instruction before any call or return.

14. Forgetting to clear YMM state. A function that uses YMM registers must clear these
with the VZEROUPPER Or VZEROALL instruction before any call or return.

15. Forgetting to clear direction flag. Any function that sets the direction flag with sTD
must clear it with cLp before any call or return.

16. Mixing signed and unsigned integers. Unsigned integers are compared using the J&
and Ja instructions. Signed integers are compared using the Jr. and JG instructions.
Mixing signed and unsigned integers can have unintended consequences.

17. Forgetting to scale array index. An array index must be multiplied by the size of one
array element. For example mov eax, MyIntegerArray[ebx*4].

18. Exceeding array bounds. An array with n elements is indexed from 0 to n - 1, not
from 1 to n. A defective loop writing outside the bounds of an array can cause errors
elsewhere in the program that are hard to find.

19. Loop with £cx = 0. A loop that ends with the L.ooP instruction will repeat 232 times if
ECX is zero. Be sure to check if Ecx is zero before the loop.

20. Reading carry flag after 1nc or pEc. The 1nC and DEC instructions do not change the
carry flag. Do not use instructions that read the carry flag, such as apc, sBg, Jc, JBE,
SETA, etc. after I1nc or pEC. Use ADD and suB instead of 1nc and pDEcC to avoid this
problem.

3 The basics of assembly coding

3.1 Assemblers available

There are several assemblers available for the x86 instruction set, but currently none of
them is good enough for universal recommendation. Assembly programmers are in the
unfortunate situation that there is no universally agreed syntax for x86 assembly. Different
assemblers use different syntax variants. The most common assemblers are listed below.

MASM

The Microsoft assembler is included with Microsoft C++ compilers. Free versions can
sometimes be obtained by downloading the Microsoft Windows driver kit (WDK) or the
platforms software development kit (SDK) or as an add-on to the free Visual C++ Express
Edition. MASM has been a de-facto standard in the Windows world for many years, and the
assembly output of most Windows compilers uses MASM syntax. MASM has many
advanced language features. The syntax is somewhat messy and inconsistent due to a
heritage that dates back to the very first assemblers for the 8086 processor. Microsoft is still
maintaining MASM in order to provide a complete set of development tools for Windows, but
it is obviously not profitable and the maintenance of MASM is apparently kept at a minimum.
New instruction sets are still added regularly, but the 64-bit version has several deficiencies.
Newer versions can run only when the compiler is installed and only in Windows XP or later.
Version 6 and earlier can run in any system, including Linux with a Windows emulator. Such
versions are circulating on the web.

GAS

The Gnu assembler is part of the Gnu Binutils package that is included with most
distributions of Linux, BSD and Mac OS X. The Gnu compilers produce assembly output
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that goes through the Gnu assembler before it is linked. The Gnu assembler traditionally
uses the AT&T syntax that works well for machine-generated code, but it is very
inconvenient for human-generated assembly code. The AT&T syntax has the operands in
an order that differs from all other x86 assemblers and from the instruction documentation
published by Intel and AMD. It uses various prefixes like ¢ and s for specifying operand
types. The Gnu assembler is available for all x86 platforms.

Fortunately, newer versions of the Gnu assembler has an option for using Intel syntax
instead. The Gnu-Intel syntax is almost identical to MASM syntax. The Gnu-Intel syntax
defines only the syntax for instruction codes, not for directives, functions, macros, etc. The
directives still use the old Gnu-AT&T syntax. Specify .intel syntax noprefix to use the
Intel syntax. Specify .att syntax prefix to return to the AT&T syntax before leaving
inline assembly in C or C++ code.

NASM

NASM is a free open source assembler with support for several platforms and object file
formats. The syntax is more clear and consistent than MASM syntax. NASM is updated
regularly with new instruction sets. NASM has fewer high-level features than MASM, but it is
sufficient for most purposes. | will recommend NASM as a very good multi-platform
assembler.

YASM

YASM is very similar to NASM and uses exactly the same syntax. In some periods, YASM
has been the first to support new instruction sets, in other periods NASM. YASM and NASM
may be used interchangeably. YASM has not been updated since 2014.

FASM

The Flat assembler is another open source assembler for multiple platforms. The syntax is
not compatible with other assemblers. FASM is itself written in assembly language - an
enticing idea, but unfortunately this makes the development and maintenance of it less
efficient.

WASM

The WASM assembler is included with the Open Watcom C++ compiler. The syntax
resembles MASM but is somewhat different. Not fully up to date.

JWASM

JWASM is a further development of WASM. It is fully compatible with MASM syntax,
including advanced macro and high level directives. JWASM is a good choice if MASM
syntax is desired. An integrated development environment (IDE) named Easy Code can be
used with JWASM.

TASM

Borland Turbo Assembler is included with CodeGear C++ Builder. It is compatible with
MASM syntax except for some newer syntax additions. TASM is no longer maintained but is
still available. It is obsolete and does not support current instruction sets.

GOASM

GoAsm is a free assembler for 32- and 64-bits Windows including resource compiler, linker
and debugger. The syntax is similar to MASM but not fully compatible. It is currently not up
to date with the latest instruction sets. An integrated development environment (IDE) named
Easy Code is also available.
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HLA

High Level Assembiler is actually a high level language compiler that allows assembly-like
statements and produces assembly output. This was probably a good idea at the time it was
invented, but today where the best C++ compilers support intrinsic functions, | believe that
HLA is no longer needed.

Inline assembly

Microsoft and Intel C++ compilers support inline assembly using a subset of the MASM
syntax. It is possible to access C++ variables, functions and labels simply by inserting their
names in the assembly code. This is easy, but does not support C++ register variables. See
page 36.

The Gnu compiler supports inline assembly with access to the full range of instructions and
directives of the Gnu assembler in both Intel and AT&T syntax. The access to C++ variables
from assembly uses a quite complicated method.

The Intel compilers for Linux and Mac systems support both the Microsoft style and the Gnu
style of inline assembly.

Intrinsic functions in C++

This is the newest and most convenient way of combining low-level and high-level code.
Intrinsic functions are high-level language representatives of machine instructions. For
example, you can do a vector addition in C++ by calling the intrinsic function that is
equivalent to an assembly instruction for vector addition. Furthermore, it is possible to
define a vector class with an overloaded + operator so that a vector addition is obtained
simply by writing +. Intrinsic functions are supported by Microsoft, Intel, Gnu and Clang
compilers. See page 34 and manual 1: "Optimizing software in C++".

Which assembler to choose?

In most cases, the easiest solution is to use intrinsic functions in C++ code. The compiler
can take care of most of the optimization so that the programmer can concentrate on
choosing the best algorithm and organizing the data into vectors. System programmers can
access system instructions by using intrinsic functions without having to use assembly
language.

Where real low-level programming is needed, such as in highly optimized function libraries
or device drivers, you may use an assembler.

It may be preferred to use an assembler that is compatible with the C++ compiler you are
using. This allows you to use the compiler for translating C++ to assembly, optimize the
assembly code further, and then assembile it. If the assembler is not compatible with the
syntax generated by the compiler then you may generate an object file with the compiler
and disassemble the object file to the assembly syntax you need. The objconv disassembler
supports several different syntax dialects.

The NASM assembler is a good choice for many purposes because it supports many
platforms and object file formats, it is well maintained, and usually up to date with the latest
instruction sets.

The examples in this manual use MASM syntax, unless otherwise noted. The MASM syntax
is described in Microsoft Macro Assembler Reference at msdn.microsoft.com.

See www.agner.org/optimize for links to various syntax manuals, coding manuals and
discussion forums.
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3.2 Register set and basic instructions

Reqisters in 16 bit mode

General purpose and integer registers

Full register Partial register Partial register

bit 0- 15 bit 8 - 15 bit0-7
AX AH AL
BX BH BL
CX CH CL
DX DH DL
ST
DI
BP
SP

Flags
Ip
Table 3.1. General purpose registers in 16 bit mode.

The 32-bit registers are also available in 16-bit mode if supported by the microprocessor
and operating system. The high word of Esp should not be used because it is not saved
during interrupts.

Floating point registers

Full register
bit 0-79

Table 3.2. Floating point stack registers

MMX registers may be available if supported by the microprocessor. XMM registers may be
available if supported by microprocessor and operating system.

Segment registers

Full register
bit 0 - 15

CS

DS

ES

SS

Table 3.3. Segment registers in 16 bit mode

Register rs and s may be available.

Reqisters in 32 bit mode

General purpose and integer registers
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Full register Partial register Partial register Partial register

bit 0 - 31 bit 0 - 15 bit 8 - 15 bit0-7
EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL
EST ST
EDI DI
EBP BP
ESP SP

EFlags Flags
EIP TP
Table 3.4. General purpose registers in 32 bit mode

Floating point and 64-bit vector registers
Full register Partial register
bit 0- 79 bit 0 - 63
ST (0) MMO
ST (1) MM1
ST (2) MM2
ST (3) MM3
ST (4) MM4
ST (5) MM5
ST (6) MM6
ST (7) MM7
Table 3.5. Floating point and MMX registers

The MMX registers are only available if supported by the microprocessor. The ST and MMX
registers cannot be used in the same part of the code. A section of code using MMX
registers must be separated from any subsequent section using ST registers by executing
an eMMs instruction.

128- and bigger integer and floating point vector registers

Full or partial register Full or partial register Full register
bit 0 - 127 bit 0 - 255 bit 0- 511

XMMO YMMO ZMMO

XMM1 YMM1 ZMM1

XMM2 YMM2 ZMM2

XMM3 YMM3 ZMM3

XMM4 YMM4 ZMM4

XMM5 YMM5 ZMM5

XMM6 YMM6 ZMM6

XMM7 YMM7 ZMM7

Table 3.6. XMM, YMM and ZMM registers in 32 bit mode

The XMM registers are only available if supported both by the microprocessor and the
operating system. Scalar floating point instructions use only 32 or 64 bits of the XMM
registers for single or double precision, respectively. The YMM registers are available only if
the processor and the operating system supports the AVX instruction set. The ZMM
registers are available if the processor supports the AVX-512 instruction set.

Segment registers

Full register
bit 0 - 15

CS

DS

ES
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EF'S

GS

SS

Table 3.7. Segment registers in 32 bit mode

Reqisters in 64 bit mode

General purpose and integer registers

Full register Partial Partial Partial Partial
bit 0 - 63 register register register register
bit 0- 31 bit 0 - 15 bit 8 - 15 bit0-7
RAX EAX AX AH AL
RBX EBX BX BH BL
RCX ECX CX CH CL
RDX EDX DX DH DL
RSI ESI ST SIL
RDT EDT DI DIL
RBP EBP BP BPL
RSP ESP SP SPL
R8 R8D R8W RSB
RO ROD ROW R9B
R10 R10D R10W R10B
R11 R11D R11W R11B
R12 R12D R12W R12B
R13 R13D R13W R13B
R14 R14D R14W R14B
R15 R15D R15W R15B
RFlags Flags
RIP

Table 3.8. Registers in 64 bit mode

The high 8-bit registers aH, BH, CH, DH can only be used in instructions that have no REX
prefix.

Note that modifying a 32-bit partial register will set the rest of the register (bit 32-63) to zero,
but modifying an 8-bit or 16-bit partial register does not affect the rest of the register. This
can be illustrated by the following sequence:

; Example 3.1. 8, 16, 32 and 64 bit registers

mov rax, 1111111111111111H ; rax = 1111111111111111H
mov eax, 22222222H ; rax = 0000000022222222H
mov ax, 3333H ; rax = 0000000022223333H
mov al, 44H ; rax = 0000000022223344H

There is a good reason for this inconsistency. Setting the unused part of a register to zero is
more efficient than leaving it unchanged because this removes a false dependence on
previous values. But the principle of resetting the unused part of a register cannot be
extended to 16 bit and 8 bit partial registers because this would break the backwards
compatibility with 32-bit and 16-bit modes.

The only instruction that can have a 64-bit immediate data operand is mov. Other integer
instructions can only have a 32-bit sign extended operand. Examples:

; Example 3.2. Immediate operands, full and sign extended

mov rax, 1111111111111111H ; Full 64 bit immediate operand
mov rax, -1 ; 32 bit sign-extended operand
mov eax, OQffffffffH ; 32 bit zero-extended operand
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add rax, 1 ; 8 Dbit sign-extended operand

add rax, 100H ; 32 bit sign-extended operand

add eax, 100H ; 32 bit operand. result is zero-extended
mov rbx, 100000000H ; 64 bit immediate operand

add rax, rbx ; Use an extra register if big operand

It is not possible to use a 16-bit sign-extended operand. If you need to add an immediate
value to a 64 bit register then it is necessary to first move the value into another register if
the value is too big for fitting into a 32 bit sign-extended operand.

Floating point and 64-bit vector registers

Full register Partial register
bit 0 - 79 bit 0 - 63
ST (0) MMO
ST (1) MM1
ST (2) MM2
ST (3) MM3
ST (4) MM4
ST (5) MM5
ST (6) MM6
ST (7) MM7
Table 3.9. Floating point and MMX registers

The ST and MMX registers cannot be used in the same part of the code. A section of code

using MMX registers must be separated from any subsequent section using ST registers by
executing an EmMMs instruction. The ST and MMX registers cannot be used in device drivers

for 64-bit Windows.

128-bit and larger integer and floating point vector registers

Full or partial register Full or partial register Full register
bit 0 - 127 bit 0 - 255 bit 0 - 511
XMMO YMMO ZMMO
XMM1 YMM1 ZMM1
XMM2 YMM2 ZMM2
XMM3 YMM3 ZMM3
XMM4 YMM4 ZMM4
XMM5 YMM5 ZMM5
XMM6 YMM6 ZMM6
XMM7 YMM7 ZMM7
XMM8 YMM8 ZMM8
XMMO9 YMMO ZMM9
XMM1 0 YMM1 0 ZMM10
XMM1 1 YMM1 1 ZMM11
XMM1 2 YMM12 ZMM1 2
XMM1 3 YMM1 3 ZMM1 3
XMM1 4 YMM1 4 ZMM1 4
XMM1 5 YMM15 ZMM15
ZMM1 6
ZMM1 7
ZMM1 8
ZMM19
ZMM20
ZMM2 1
ZMM2 2
ZMM2 3
ZMM2 4
ZMM2 5
ZMM2 6
ZMM2 7
ZMM2 8
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ZMM2 9

ZMM30

ZMM31

Table 3.10. XMM, YMM and ZMM registers in 64 bit mode

Scalar floating point instructions use only 32 or 64 bits of the XMM registers for single or
double precision, respectively. The YMM registers are available only if the processor and
the operating system supports the AVX instruction set. The ZMM registers are available
only if the processor supports the AVX512 instruction set. It is possible to use XMM16-31
and YMM16-31 when AVX512VL is supported by the processor.

Segment registers

Full register
bit 0-15

CS

F'S

GS

Table 3.11. Segment registers in 64 bit mode

Segment registers are only used for special purposes.

3.3 Addressing modes

Addressing in 16-bit mode

16-bit code uses a segmented memory model. A memory operand can have any of these
components:

e A segment specification. This can be any segment register or a segment or group
name associated with a segment register. (The default segment is ps, except if Bp is
used as base register). The segment can be implied from a label defined inside a
segment.

e A label defining a relocatable offset. The offset relative to the start of the segment is
calculated by the linker.

e An immediate offset. This is a constant. If there is also a relocatable offset then the
values are added.

e A base register. This can only be Bx or Bp.
e Anindex register. This can only be s1 or 1. There can be no scale factor.

A memory operand can have all of these components. An operand containing only an
immediate offset is not interpreted as a memory operand by the MASM assembler, even if it
has a []. Examples:

; Example 3.3. Memory operands in 16-bit mode
MOV AX, DS:[100H] ; Address has segment and immediate offset
ADD AX, MEM[SI]+4 ; Has relocatable offset and index and immediate

Data structures bigger than 64 kb are handled in the following ways. In real mode and
virtual mode (DOS): Adding 1 to the segment register corresponds to adding 10H to the
offset. In protected mode (Windows 3.x): Adding 8 to the segment register corresponds to
adding 10000H to the offset. The value added to the segment must be a multiple of 8.
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Addressing in 32-bit mode

32-bit code uses a flat memory model in most cases. Segmentation is possible but only
used for special purposes (e.g. thread environment block in £s).

A memory operand can have any of these components:
e A segment specification. Not used in flat mode.

e A label defining a relocatable offset. The offset relative to the FL.AT segment group is
calculated by the linker.

¢ An immediate offset. This is a constant. If there is also a relocatable offset then the
values are added.

e A base register. This can be any 32 bit register.
e Anindex register. This can be any 32 bit register except Esp.
e A scale factor applied to the index register. Allowed values are 1, 2, 4, 8.

A memory operand can have all of these components. Examples:

; Example 3.4. Memory operands in 32-bit mode

mov eax, fs:[10H] ; Address has segment and immediate offset
add eax, mem[esi] ; Has relocatable offset and index
add eax, [esptecx*4+8] ; Base, index, scale and immediate offset

Position-independent code in 32-bit mode

Position-independent code is required for making shared objects (* . so) in 32-bit Unix-like
systems. The method commonly used for making position-independent code in 32-bit Linux
and BSD is to use a global offset table (GOT) containing the addresses of all static objects.
The GOT method is quite inefficient because the code has to fetch an address from the
GOT every time it reads or writes data in the data segment. A faster method is to use an
arbitrary reference point, as shown in the following example:

; Example 3.5a. Position-independent code, 32 bit, YASM syntax
SECTION .data

alpha: dd 1

beta: dd 2

SECTION .text

funca: ; This function returns alpha + beta
call get thunk ecx ; get ecx = eip

refpoint: ; ecx points here
mov eax, [ecxtalpha-refpoint] ; relative address
add eax, [ecxtbeta -refpoint] ; relative address
ret

get thunk ecx: ; Function for reading instruction pointer
mov ecx, [esp]
ret

The only instruction that can read the instruction pointer in 32-bit mode is the ca11
instruction. In example 3.5 we are using call get thunk ecx for reading the instruction
pointer (eip) into ecx. ecx will then point to the first instruction after the call. This is our
reference point, named refpoint.

The Gnu compiler for 32-bit Mac OS X uses a slightly different version of this method:
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Example 3.5b. Bad method!

funca: ; This function returns alpha + bet
call refpoint ; get eip on stack
refpoint:
pop ecx ; pop eip from stack
mov eax, [ecxtalpha-refpoint] ; relative address
add eax, [ecxtbeta -refpoint] ; relative address
ret

The method used in example 3.5b is bad because it has a call instruction that is not
matched by a return. This will cause subsequent returns to be mispredicted. (See manual 3:
"The microarchitecture of Intel, AMD and VIA CPUs" for an explanation of return prediction).

This method is commonly used in Mac systems, where the mach-o file format supports
references relative to an arbitrary point. Other file formats don't support this kind of
reference, but it is possible to use a self-relative reference with an offset. The YASM and
Gnu assemblers will do this automatically, while most other assemblers are unable to
handle this situation. It is therefore necessary to use a YASM or Gnu assembler if you want
to generate position-independent code in 32-bit mode with this method. The code may look
strange in a debugger or disassembler, but it executes without any problems in 32-bit Linux,
BSD and Windows systems. In 32-bit Mac systems, the loader may not identify the section
of the target correctly unless you are using an assembler that supports the reference point
method (I am not aware of any other assembler than the Gnu assembler that can do this
correctly).

The GOT method would use the same reference point method as in example 3.5a for
addressing the GOT, and then use the GOT to read the addresses of alpha and beta into
other pointer registers. This is an unnecessary waste of time and registers because if we
can access the GOT relative to the reference point, then we can just as well access alpha
and beta relative to the reference point.

The pointer tables used in switch/case statements can use the same reference point for
the table and for the pointers in the table:

; Example 3.6. Position-independent switch, 32 bit, YASM syntax
SECTION .data

Jjumptable: dd casel-refpoint, case2-refpoint, case3-refpoint

SECTION .text

funcb: ; This function implements a switch statement
mov eax, [espt4] ; function parameter
call get thunk ecx ; get ecx = eip
refpoint: ; ecx points here
cmp eax, 3
Jnb case default ; index out of range
mov eax, [ecxteax*4+jumptable-refpoint] ; read table entry
; The jump addresses are relative to refpoint, get absolute address:
add eax, ecx
Jmp eax ; Jump to desired case
casel: ce
ret
case2: ..
ret
case3: ...
ret

case default:
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ret

get thunk ecx: ; Function for reading instruction pointer
mov ecx, [esp]
ret

Addressing in 64-bit mode

64-bit code always uses a flat memory model. Segmentation is impossible except for rs and
Gs which are used for special purposes only (thread environment block, etc.).

There are several different addressing modes in 64-bit mode: RIP-relative, 32-bit absolute,
64-bit absolute, and relative to a base register.

RIP-relative addressing

This is the preferred addressing mode for static data. The address contains a 32-bit sign-
extended offset relative to the instruction pointer. The address cannot contain any segment
register or index register, and no base register other than r1p, which is implicit. Example:

; Example 3.7a. RIP-relative memory operand, MASM syntax
mov eax, [mem]

; Example 3.7b. RIP-relative memory operand, NASM/YASM syntax
default rel
mov eax, [mem]

; Example 3.7c. RIP-relative memory operand, Gas/Intel syntax
mov eax, [memtrip]

The MASM assembler always generates RIP-relative addresses for static data when no
explicit base or index register is specified. On other assemblers you must remember to
specify relative addressing.

32-bit absolute addressing in 64 bit mode

A 32-bit constant address is sign-extended to 64 bits. This addressing mode works only if it
is certain that all addresses are below 23! (or above -2%! for system code).

It is safe to use 32-bit absolute addressing in Linux and BSD main executables, where all
addresses are below 23! by default, but it cannot be used in shared objects. 32-bit absolute
addresses will normally work in Windows main executables as well (but not DLLSs), but no
Windows compiler is using this possibility.

32-bit absolute addresses cannot be used in Mac OS X, where addresses are above 232 by
default.

Note that NASM, YASM and Gnu assemblers can make 32-bit absolute addresses when
you do not explicitly specify rip-relative addresses. You have to specify default rel in
NASM/YASM or [mem+rip] in Gas to avoid 32-bit absolute addresses.

There is absolutely no reason to use absolute addresses for simple memory operands. Rip-
relative addresses make instructions shorter, they eliminate the need for relocation at load
time, and they are safe to use in all systems.

Absolute addresses are needed only for accessing arrays where there is an index register,
e.g.

; Example 3.8. 32 bit absolute addresses in 64-bit mode
mov al, [chararray + rsi]
mov ebx, [intarray + rsi*4]
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This method can be used only if the address is guaranteed to be < 23!, as explained above.
See below for alternative methods of addressing static arrays.

The MASM assembler generates absolute addresses only when a base or index register is
specified together with a memory label as in example 3.8 above.

The index register should preferably be a 64-bit register, not a 32-bit register. Segmentation
is possible only with Fs or Gs.

64-bit absolute addressing

This uses a 64-bit absolute virtual address. The address cannot contain any segment
register, base or index register. 64-bit absolute addresses can only be used with the Mov
instruction, and only with A1, AX, EAX Or RAX as source or destination.

; Example 3.9. 64 bit absolute address, YASM/NASM syntax
mov eax, dword [gword a]

This addressing mode is not supported by the MASM assembler, but it is supported by
other assemblers.

Addressing relative to 64-bit base reqister
A memory operand in this mode can have any of these components:

e A base register. This can be any 64 bit integer register.

¢ An index register. This can be any 64 bit integer register except rRsP.

e A scale factor applied to the index register. The only possible values are 1, 2, 4, 8.
¢ An immediate offset. This is a constant offset relative to the base register.

A base register is always needed for this addressing mode. The other components are
optional. Examples:

; Example 3.10. Base register addressing in 64 bit mode
mov eax, [rsi]
add eax, [rsp + 4*rcx + 8]

This addressing mode is used for data on the stack, for structure and class members and
for arrays.

Addressing static arrays in 64 bit mode

It is not possible to access static arrays with RIP-relative addressing and an index register.
There are several possible alternatives.

The following examples address static arrays. The C++ code for this example is:

// Example 3.1la. Static arrays in 64 bit mode
// C++ code:
static int a[100], b[100];
for (int 1 = 0; 1 < 100; i++) {
b[i] = -alil;
}

The simplest solution is to use 32-bit absolute addresses. This is possible as long as the
addresses are below 232,

; Example 3.11lb. Use 32-bit absolute addresses
; (64 bit Linux)
; Assumes that image base < 80000000H
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.data

A DD 100 dup (?) ; Define static array A

B DD 100 dup (?) ; Define static array B

.code

XOr ecx, ecx ;1 =0

TOPOFLOOP: ; Top of loop

mov eax, [A+rcx*4] ; 32-bit address + scaled index
neg eax

mov [B+rcx*4], eax ; 32-bit address + scaled index
add ecx, 1

cmp ecx, 100 ;1 < 100

Jb TOPOFLOOP ; Loop

The assembler will generate a 32-bit relocatable address for 2 and & in example 3.11b
because it cannot combine a RIP-relative address with an index register.

This method is used by Gnu and Intel compilers in 64-bit Linux to access static arrays. It is
not used by any compiler for 64-bit Windows, | have seen, but it works in Windows as well if
the address is less than 23, The image base is typically 222 for application programs and
between 228 and 22° for DLL's, so this method will work in most cases, but not all. This
method cannot normally be used in 64-bit Mac systems because all addresses are above
232 py default.

The second method is to use image-relative addressing. The following solution loads the
image base into register Rex by using a LA instruction with a r1p-relative address:

; Example 3.1lc. Address relative to image base
; 64 bit, Windows only, MASM assembler

.data

A DD 100 dup (?)

B DD 100 dup (?)

extern = ImageBase:byte

.code

lea rbx, _ ImageBase ; Use RIP-relative address of image base
XOr ecx, ecx ; 1 =0

TOPOFLOOP: ; Top of loop

; imagerel (A) = address of A relative to image base:
mov eax, [(imagerel A) + rbx + rcx*4]

neg eax

mov [ (imagerel B) + rbx + rcx*4], eax

add ecx, 1
cmp ecx, 100
Jjb TOPOFLOOP

This method is used in 64 bit Windows only. In Linux, the image base is available as
__executable start, butimage-relative addresses are not supported in the ELF file
format. The Mach-O format allows addresses relative to an arbitrary reference point,
including the image base, which is available as mh execute header.

The third solution loads the address of array 2 into register rRex by using a LA instruction
with a rTp-relative address. The address of B is calculated relative to a.

; Example 3.11d.

; Load address of array into base register
; (All 64-bit systems)

.data

A DD 100 dup (?)

B DD 100 dup (?)
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.code

lea rbx, [A] ; Load RIP-relative address of A

XO0r ecx, ecx ; 1 =0

TOPOFLOOP: ; Top of loop

mov eax, [rbx + 4*rcx] ; A[i]

neg eax

mov [(B-A) + rbx + 4*rcx], eax ; Use offset of B relative to A

add ecx, 1
cmp ecx, 100
jb  TOPOFLOOP

Note that we can use a 32-bit instruction for incrementing the index (app ECX, 1), even
though we are using the 64-bit register for index (rRcx). This works because we are sure that
the index is non-negative and less than 2%2. This method can use any address in the data
segment as a reference point and calculate other addresses relative to this reference point.

If an array is more than 23! bytes away from the instruction pointer then we have to load the
full 64 bit address into a base register. For example, we can replace LEA RBX, [A] Wwith
MOV RBX,OFFSET A in example 3.11d.

Position-independent code in 64-bit mode

Position-independent code is easy to make in 64-bit mode. Static data can be accessed
with rip-relative addressing. Static arrays can be accessed as in example 3.11d.

The pointer tables of switch statements can be made relative to an arbitrary reference point.
It is convenient to use the table itself as the reference point:

; Example 3.12. switch with relative pointers, 64 bit, YASM syntax
SECTION .data
Jumptable: dd casel-jumptable, caseZ2-jumptable, case3-jumptable

SECTION .text

default rel ; use relative addresses
funcb: ; This function implements a switch statement
mov eax, [rsp+8] ; function parameter
cmp eax, 3
Jnb case default ; index out of range
lea rdx, [jumptable] ; address of table
movsxd rax, dword [rdxtrax*4] ; read table entry
; The jump addresses are relative to jumptable, get absolute address:
add rax, rdx
Jmp rax ; Jump to desired case
casel: .
ret
case2: e
ret
case3: ...
ret

case default:
ret
This method can be useful for reducing the size of long pointer tables because it uses 32-bit
relative pointers rather than 64-bit absolute pointers.

The MASM assembler cannot generate the relative tables in example 3.12 unless the jump
table is placed in the code segment. It is preferred to place the jump table in the data
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segment for optimal caching and code prefetching, and this can be done with the YASM or
Gnu assembler.

3.4 Instruction code format

The format for instruction codes is described in detail in manuals from Intel and AMD. The
basic principles of instruction encoding are explained here because of its relevance to
microprocessor performance. In general, you can rely on the assembler for generating the
smallest possible encoding of an instruction.

Each instruction can consist of the following elements, in the order mentioned:

1.

Prefixes (0-5 bytes)
These are prefixes that modify the meaning of the opcode that follows. There are
several different kinds of prefixes as described in table 3.12 below.

Opcode (1-3 bytes)

This is the instruction code. It can have these forms:

Single byte: XX

Two bytes: OF XX

Three bytes: OF 38 XX or OF 3A XX

Three bytes opcodes of the form OF 38 XX always have a mod-reg-r/m byte and no
displacement. Three bytes opcodes of the form OF 3A XX always have a mod-reg-
r/m byte and 1 byte displacement.

mod-reg-r/m byte (0-1 byte)

This byte specifies the operands. It consists of three fields. The mod field is two bits
specifying the addressing mode, the reg field is three bits specifying a register for the
first operand (most often the destination operand), the r/m field is three bits
specifying the second operand (most often the source operand), which can be a
register or a memory operand. The reg field can be part of the opcode if there is only
one operand.

SIB byte (0-1 byte)

This byte is used for memory operands with complex addressing modes, and only if
there is a mod-reg-r/m byte. It has two bits for a scale factor, three bits specifying a
scaled index register, and three bits specifying a base pointer register. A SIB byte is
needed in the following cases:

a. If a memory operand has two pointer or index registers,

b. If a memory operand has a scaled index register,

c. If amemory operand has the stack pointer (Esp or rRsP) as base pointer,

d. If a memory operand in 64-bit mode uses a 32-bit sign-extended direct memory
address rather than a RIP-relative address.

A SIB byte cannot be used in 16-bit addressing mode.

Displacement (0, 1, 2, 4 or 8 bytes)

This is part of the address of a memory operand. It is added to the value of the
pointer registers (base or index or both), if any.

A 1-byte sign-extended displacement is possible in all addressing modes if a pointer
register is specified.

A 2-byte displacement is possible only in 16-bit addressing mode.

A 4-byte displacement is possible in 32-bit addressing mode.

A 4-byte sign-extended displacement is possible in 64-bit addressing mode. If there
are any pointer registers specified then the displacement is added to these. If there
is no pointer register specified and no SIB byte then the displacement is added to
RIP. If there is a SIB byte and no pointer register then the sign-extended value is an
absolute direct address.
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An 8-byte absolute direct address is possible in 64-bit addressing mode for a few
MOV instructions that have no mod-reg-r/m byte.

Immediate operand (0, 1, 2, 4 or 8 bytes)

This is a data constant which in most cases is a source operand for the operation.
A 1-byte sign-extended immediate operand is possible in all modes for all
instructions that can have immediate operands, except MOV, CALL and RET.

A 2-byte immediate operand is possible for instructions with 16-bit operand size.
A 4-byte immediate operand is possible for instructions with 32-bit operand size.
A 4-byte sign-extended immediate operand is possible for instructions with 64-bit

operand size.

An 8-byte immediate operand is possible only for moves into a 64-bit register.

3.5 Instruction prefixes

The following table summarizes the use of instruction prefixes.

prefix for: 16 bit mode | 32 bit mode | 64 bit mode
8 bit operand size none none none
16 bit operand size none 66h 66h
32 bit operand size 66h none none
64 bit operand size n.a. n.a. REX.W (48h)
packed integers in mmx register none none none
packed integers in xmm register 66h 66h 66h
packed single-precision floats in xmm register none none none
packed double-precision floats in xmm register 66h 66h 66h
scalar single-precision floats in xmm register F3h F3h F3h
scalar double-precision floats in xmm register F2h F2h F2h
16 bit address size none 67h n.a.
32 bit address size 67h none 67h
64 bit address size n.a. n.a. none
Cs segment 2Eh 2Eh n.a.
DS segment 3Eh 3Eh n.a.
ES segment 26h 26h n.a.
ss segment 36h 36h n.a.
FS segment 64h 64h 64h
GS segment 65h 65h 65h
REP Of REPE String operation F3h F3h F3h
REPNE String operation F2h F2h F2h
Locked memory operand FOh FOh FOh
Register r8 - R15, xMM8 - xMM15 in reg field n.a. n.a. REX.R (44h)
Register r8 - rR15, xMM8 - xMM15 in r/m field n.a. n.a. REX.B (41h)
Register r8 - R15 in SIB.base field n.a. n.a. REX.B (41h)
Register r8 - r15 in SIB.index field n.a. n.a. REX.X (42h)
Register s11, DIL, BPL, SPL n.a. n.a. REX (40h)
Predict branch taken (Intel NetBurst only) 3Eh 3Eh 3Eh
Predict branch not taken (Intel NetBurst only) 2Eh 2Eh 2Eh
Preserve bounds register on jump (MPX) F2h F2h F2h
VEX prefix, 2 bytes C5h C5h C5h
VEX prefix, 3 bytes C4h C4h C4h
XOP prefix, 3 bytes (AMD only) 8Fh 8Fh 8Fh
EVEX prefix, 4 bytes (AVX-512) 62h 62h 62h
MVEX prefix, 4 bytes (Intel Knights Corner only) n.a. 62h 62h

Table 3.12. Instruction prefixes
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Segment prefixes are rarely needed in a flat memory model. The ps segment prefix is only
needed if a memory operand has base register Bp, EBP or ESP and the ps segment is
desired rather than ss.

The lock prefix is only allowed on certain instructions that read, modify and write a memory
operand.

The branch prediction prefixes work only on Intel NetBurst (Pentium 4) and are rarely
needed.

There can be no more than one REX prefix. If more than one REX prefix is needed then the
values are OR'ed into a single byte with a value in the range 40h to 4Fh. These prefixes are
available only in 64-bit mode. The bytes 40h to 4Fh are instruction codes in 16-bit and 32-bit
mode. These instructions (1nCc r and DEC r) are coded differently in 64-bit mode.

The prefixes can be inserted in any order, except for the REX prefixes and the multi-byte
prefixes (VEX, XOP, EVEX, MVEX) which must come after any other prefixes.

The AVX instruction set uses 2- and 3-byte prefixes called VEX prefixes. The VEX prefixes
include bits to replace all 66, F2, F3 and REX prefixes as well as the OF, OF 38 and OF 3A
escape bytes of multibyte opcodes.. VEX prefixes also include bits for specifying YMM
registers, an extra register operand, and bits for future extensions. The EVEX and MVEX
prefixes are similar to the VEX prefixes, with extra bits for supporting more registers,
masked operations, and other features. No additional prefixes are allowed after a VEX,
EVEX or MVEX prefix. The only prefixes allowed before a VEX, EVEX or MVEX prefix are
segment prefixes and address size prefixes.

Meaningless, redundant or misplaced prefixes are ignored, except for the LOCK and VEX
prefixes. But prefixes that have no effect in a particular context may have an effect in future
processors.

Unnecessary prefixes may be used instead of nop's for aligning code, but an excessive
number of prefixes can slow down instruction decoding on some processors.

There can be any number of prefixes as long as the total instruction length does not exceed
15 bytes. For example, a MoV EAX, EBX With ten Es segment prefixes will still work, but it
may take longer time to decode.

4 ABI standards

ABI stands for Application Binary Interface. An ABI is a standard for how functions are
called, how parameters and return values are transferred, and which registers a function is
allowed to change. It is important to obey the appropriate ABI standard when combining
assembly with high level language. The details of calling conventions etc. are covered in
manual 5: "Calling conventions for different C++ compilers and operating systems". The
most important rules are summarized here for your convenience.
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4.1 Register usage

16 bit 32 bit 64 bit 64 bit
DOS, Windows, Windows unix
Windows Unix
Registers that | Ax, BX, C¥, DX, EAX, ECX, EDX, RAX, RCX, RDX, RAX, RCX, RDX,
can be used ES, ST (0)-ST(7), R8-R11, RSI, RDI,
freely ST (0)-ST (7) XMMO-XMM7, ST (0)-ST(7), R8-R11,
YMMO-YMM7 XMMO-XMM5, ST(0)-ST (7),
YMMO-YMMS, XMMO-XMM15,
YMM6H-YMM15H YMMO-YMM15
Registers that | sz, I, BP, DS EBX, ESI, EDI, RBX, RSI, RDI, RBX, RBP,
must be EBP RBP, R12-R15, R12-R15
saved and XMM6-XMM1 5
restored
Registers that DS, ES, FS, GS,
cannot be SS
changed
Registers (ECx) RCX, RDX, R8,R9, | RDI, RSI, RDX,
used for para- XMMO-XMM3, RCX, R8, RO,
meter transfer YMMO-YMM3 XMMO-XMM7 ,
YMMO-YMM7
Registers AX, DX, ST (0) EAX, EDX, ST (0) | RAX, XMMO, RAX, RDX, XMMO,
used for YMMO XMM1, YMMO
return values ST(0), ST (1)

Table 4.1. Register usage

The floating point registers sT (0) - sT (7) must be empty before any call or return, except
when used for function return value. The MMX registers must be cleared by EMvs before
any call or return. The YMM registers must be cleared by vzerouprrER before any call or
return to non-VEX code.

The arithmetic flags can be changed freely. The direction flag may be set temporarily, but
must be cleared before any call or return in 32-bit and 64-bit systems. The interrupt flag
cannot be cleared in protected operating systems. The floating point control word and bit 6-
15 of the mMxcCsr register must be saved and restored in functions that modify them.

Register Fs and s are used for thread information blocks etc. and should not be changed.
Other segment registers should not be changed, except in segmented 16-bit models.

4.2 Data storage

Variables and objects that are declared inside a function in C or C++ are stored on the stack
and addressed relative to the stack pointer or a stack frame. This is the most efficient way of
storing data, for two reasons. Firstly, the stack space used for local storage is released
when the function returns and may be reused by the next function that is called. Using the
same memory area repeatedly improves data caching. The second reason is that data
stored on the stack can often be addressed with an 8-bit offset relative to a pointer rather
than the 32 bits required for addressing data in the data segment. This makes the code

more compact so that it takes less space in the code cache or trace cache.

Global and static data in C++ are stored in the data segment and addressed with 32-bit
absolute addresses in 32-bit systems and with 32-bit r1p-relative addresses in 64-bit
systems. A third way of storing data in C++ is to allocate space with new or malloc. This
method should be avoided if speed is critical.
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4.3 Function calling conventions

Calling convention in 16 bit mode DOS and Windows 3.x

Function parameters are passed on the stack with the first parameter at the lowest address.
This corresponds to pushing the last parameter first. The stack is cleaned up by the caller.

Parameters of 8 or 16 bits size use one word of stack space. Parameters bigger than 16 bits
are stored in little-endian form, i.e. with the least significant word at the lowest address. All
stack parameters are aligned by 2.

Function return values are passed in registers in most cases. 8-bit integers are returned in
AL, 16-bit integers and near pointers in 2x, 32-bit integers and far pointers in Dx:Ax,
Booleans in 2x, and floating point values in sT (0).

Calling convention in 32 bit Windows, Linux, BSD, Mac OS X
Function parameters are passed on the stack according to the following calling conventions:

Calling convention Parameter order on stack Parameters removed by
__cdecl First par. at low address Caller
__stdcall First par. at low address Subroutine
_ fastcall Microsoft First 2 parameters in ecx, edx. Subroutine
and Gnu Restas stdcall
__fastcall Borland First 3 parameters in eax, edx, Subroutine
ecx. Restas stdcall

_pascal First par. at high address Subroutine

thiscall Microsoft this in ecx. Restas stdcall | Subroutine

Table 4.2. Calling conventions in 32 bit mode

The cdecl calling convention is the default in Linux. In Windows, the  cdec1 convention
is also the default except for member functions, system functions and DLL's. Statically
linked modules in .obj and . 1ib files should preferably use  cdec1, while dynamic link
libraries in .d11 files should use  stdcall. The Microsoft, Intel, Digital Mars and
Codeplay compilersuse  thiscall by default for member functions under Windows, the
Borland compiler uses  cdecl with 'this' as the first parameter.

The fastest calling convention for functions with integer parametersis  fastcall, but this
calling convention is not standardized.

Remember that the stack pointer is decreased when a value is pushed on the stack. This
means that the parameter pushed first will be at the highest address, in accordance with the
_pascal convention. You must push parameters in reverse order to satisfy the  cdec1 and
__stdcall conventions.

Parameters of 32 bits size or less use 4 bytes of stack space. Parameters bigger than 32
bits are stored in little-endian form, i.e. with the least significant pworD at the lowest
address, and aligned by 4.

Mac OS X and the Gnu compiler version 3 and later align the stack by 16 before every call
instruction, though this behavior is not consistent. It is possible to specify different
alignments, and this can lead to incompatibilities. See manual 5: "Calling conventions for
different C++ compilers and operating systems" for details.

Function return values are passed in registers in most cases. 8-bit integers are returned in
AL, 16-bit integers in ax, 32-bit integers, pointers, references and Booleans in eax, 64-bit
integers in Ebx: EAX, and floating point values in sT (0).
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See manual 5: "Calling conventions for different C++ compilers and operating systems" for
details about parameters of composite types (struct, class, union) and vector types
(__m64, ml28, m256).

Calling conventions in 64 bit Windows

The first parameter is transferred in rcx if it is an integer or in xMmo if itis a f1oat Or
double. The second parameter is transferred in rRbx or xvM1. The third parameter is trans-
ferred in r8 or xmM2. The fourth parameter is transferred in R9 or xmMM3. Note that RCx is not
used for parameter transfer if xMv0 is used, and vice versa. No more than four parameters
can be transferred in registers, regardless of type. Any further parameters are transferred
on the stack with the first parameter at the lowest address and aligned by 8. Member
functions have 'this' as the first parameter.

The caller must allocate 32 bytes of free space on the stack in addition to any parameters
transferred on the stack. This is a shadow space where the called function can save the four
parameter registers if it needs to. The shadow space is the place where the first four
parameters would have been stored if they were transferred on the stack according to the
__cdecl rule. The shadow space belongs to the called function which is allowed to store the
parameters (or anything else) in the shadow space. The caller must reserve the 32 bytes of
shadow space even for functions that have no parameters. The caller must clean up the
stack, including the shadow space. Return values are in RAx Or XMMO.

The stack pointer must be aligned by 16 before any carL instruction, so that the value of
RSP is 8 modulo 16 at the entry of a function. The function can rely on this alignment when
storing XMM registers to the stack.

See manual 5: "Calling conventions for different C++ compilers and operating systems" for
details about parameters of composite types (struct, class, union) and vector types
(__ m64, m128, m256).

Calling conventions in 64 bit Linux, BSD and Mac OS X

The first six integer parameters are transferred in RDI, RSI, RDX, RCX, R8, R9, respectively.
The first eight floating point parameters are transferred in xmvo0 - xvm7. All these registers
can be used, so that a maximum of fourteen parameters can be transferred in registers. Any
further parameters are transferred on the stack with the first parameters at the lowest
address and aligned by 8. The stack is cleaned up by the caller if there are any parameters
on the stack. There is no shadow space. Member functions have 'this' as the first
parameter. Return values are in RAX Or xMMO.

The stack pointer must be aligned by 16 before any caArL instruction, so that the value of
RSP is 8 modulo 16 at the entry of a function. The function can rely on this alignment when
storing XMM registers to the stack.

The address range from [RsP-1] to [RsP-128] is called the red zone. A function can safely
store data above the stack in the red zone as long as this is not overwritten by any pusH or
CALL instructions.

See manual 5: "Calling conventions for different C++ compilers and operating systems" for
details about parameters of composite types (struct, class, union) and vector types
(__m64, ml128, m256).

4.4 Name mangling and name decoration

The support for function overloading in C++ makes it necessary to supply information about
the parameters of a function to the linker. This is done by appending codes for the
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parameter types to the function name. This is called nhame mangling. The name mangling
codes have traditionally been compiler specific. Fortunately, there is a growing tendency
towards standardization in this area in order to improve compatibility between different
compilers. The name mangling codes for different compilers are described in detail in
manual 5: "Calling conventions for different C++ compilers and operating systems".

The problem of incompatible name mangling codes is most easily solved by using
extern "C" declarations. Functions with extern "c" declaration have no name
mangling. The only decoration is an underscore prefix in 16- and 32-bit Windows and 32-
and 64-bit Mac OS. There is some additional decoration of the name for functions with
__stdcall and fastcall declarations.

The extern "c" declaration cannot be used for member functions, overloaded functions,
operators, and other constructs that are not supported in the C language. You can avoid
name mangling in these cases by defining a mangled function that calls an unmangled
function. If the mangled function is defined as inline then the compiler will simply replace the
call to the mangled function by the call to the unmangled function. For example, to define an
overloaded C++ operator in assembly without name mangling:

class C1;

// unmangled assembly function;

extern "C" Cl cplus (Cl const & a, Cl const & Db);

// mangled C++ operator

inline Cl1 operator + (Cl const & a, Cl const & b) {
// operator + replaced inline by function cplus
return cplus(a, b);

Overloaded functions can be inlined in the same way. Class member functions can be
translated to friend functions as illustrated in example 7.1b page 49.

4.5 Function examples

The following examples show how to code a function in assembly that obeys the calling
conventions. First the code in C++:

// Example 4.1la
extern "C" double sinxpnx (double x, int n) {
return sin(x) + n * x;

}

The same function can be coded in assembly. The following examples show the same
function coded for different platforms.

; Example 4.1b. 16-bit DOS and Windows 3.x
ALIGN 4
_sinxpnx PROC NEAR

; parameter x = [SP+2]
; parameter n = [SP+10]
; return value = ST (0)
push bp ; bp must be saved
mov bp, sp ; stack frame
fild word ptr [bp+l2] ;n
fld gword ptr [bp+4] ;X
fmul st(l), st(0) ; n*x
fsin ; sin(x)
fadd ; sin(x) + n*x
pop bp ; restore bp
ret ; return value is in st (0)
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_sinxpnx ENDP

In 16-bit mode we need BP as a stack frame because sp cannot be used as base pointer.
The integer n is only 16 bits. | have used the hardware instruction rs1n for the sin function.

; Example 4.1c. 32-bit Windows

EXTRN _sin:near

ALIGN 4

_sinxpnx PROC near

; parameter x = [ESP+4]

; parameter n = [ESP+12]

; return value = ST (0)
fld gword ptr [esp+4] ;X
sub esp, 8 ; make space for parameter x
fstp qgword ptr [esp] ; store parameter for sin; clear st (0)
call sin ; library function for sin()
add esp, 8 ; clean up stack after call
fild dword ptr [esp+l2] ; n
fmul qgword ptr [esp+4] ; n*x
fadd ; sin(x) + n*x
ret ; return value 1is 1in st (0)

_sinxpnx ENDP

Here, | have chosen to use the library function sin instead of rsIn. This may be faster in
some cases because Fs1n gives higher precision than needed. The parameter for sin is
transferred as 8 bytes on the stack.

; Example 4.1d. 32-bit Linux

EXTRN sin:near

ALIGN 4

sinxpnx PROC near

; parameter x = [ESP+4]

; parameter n = [ESP+12]

; return value = ST (0)
fld gword ptr [esp+t4] ; X
sub esp, 12 ; Keep stack aligned by 16 before call
fstp gword ptr [esp] ; Store parameter for sin; clear st (0)
call sin ; Library proc. may be faster than fsin
add esp, 12 ; Clean up stack after call
fild dword ptr [esp+l2] ; n
fmul gword ptr [espt4] ; n*x
fadd ; sin(x) + n*x
ret ; Return value is in st (0)

sinxpnx ENDP

In 32-bit Linux there is no underscore on function names. The stack must be kept aligned by
16 in Linux (GCC version 3 or later). The call to sinxpnx subtracts 4 from esp. We are
subtracting 12 more from EsP so that the total amount subtracted is 16. We may subtract
more, as long as the total amount is a multiple of 16. In example 4.1c we subtracted only 8
from Esp because the stack is only aligned by 4 in 32-bit Windows.

; Example 4.le. 64-bit Windows

EXTRN sin:near
ALIGN 4
sinxpnx PROC
; parameter x = xmmO
; parameter n = edx
; return value = xmm0
push rbx ; rbx must be saved
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movaps [rsp+l16], xmmb ; save xmm6 in my shadow space

sub rsp, 32 ; shadow space for call to sin

mov ebx, edx ; save n

movsd xmm6, xmmO ; save x

call sin ; xmmO0 = sin (xmmO)

cvtsi2sd xmml, ebx ; convert n to double

mulsd xmml, xmmb6 ; n *ox

addsd xmmQO, xmml ; sin(x) + n * x

add rsp, 32 ; restore stack pointer

movaps xmm6, [rsp+l16] ; restore xmmb6

pop rbx ; restore rbx

ret ; return value is in xmmO
sinxpnx ENDP

Function parameters are transferred in registers in 64-bit Windows. Ecx is not used for
parameter transfer because the first parameter is not an integer. We are using rex and
xMM6 for storing n and x across the call to sin. We have to use registers with callee-save
status for this, and we have to save these registers on the stack before using them. The
stack must be aligned by 16 before the call to sin and we can rely on the stack being
aligned by 16 before the call to sinxpnx. The call to sinxpnx subtracts 8 from rRsp; the
PUSH RBX instruction subtracts 8; and the sus instruction subtracts 32. The total amount
subtracted is 8+8+32 = 48, which is a multiple of 16 so that the proper alignment is
preserved. The extra 32 bytes on the stack is shadow space for the call to sin. Note that
example 4.1e does not include support for exception handling. It is necessary to add tables
with stack unwind information if the program relies on catching exceptions generated in the
function sin.

; Example 4.1f. 64-bit Linux

EXTRN sin:near
ALIGN 4
sinxpnx PROC
PUBRLIC sinxpnx
; parameter x = xmm0
; parameter n = edi
; return value = xmmO
push rbx ; rbx must be saved
sub rsp, 16 ; make local space and align stack by 16
movaps [rsp]l, xmmO ; save X
mov ebx, edi ; save n
call sin ; xmm0O = sin (xmmO)
cvtsi2sd xmml, ebx ; convert n to double
mulsd xmml, [rsp] ; n *ox
addsd xmmQO, xmml ; sin(x) + n * x
add rsp, 16 ; restore stack pointer
pop rbx ; restore rbx
ret ; return value is in xmmO
sinxpnx ENDP

64-bit Linux does not use the same registers for parameter transfer as 64-bit Windows
does. There are no XMM registers with callee-save status, so we have to save x on the
stack across the call to sin, even though saving it in a register might be faster (Saving x in
a 64-bit integer register is possible, but slow). n can still be saved in a general purpose
register with callee-save status. The stack is aligned by 16. There is no need for shadow
space on the stack. The red zone cannot be used because it would be overwritten by the
call to sin. Note that example 4.1f does not include support for exception handling. It is
necessary to add tables with stack unwind information if the program relies on catching
exceptions generated in the function sin.
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5 Using intrinsic functions in C++

As already mentioned, there are three different ways of making assembly code: using
intrinsic functions and vector classes in C++, using inline assembly in C++, and making
separate assembly modules. Intrinsic functions are described in this chapter. The other two
methods are described in the following chapters.

Intrinsic functions and vector classes are highly recommended because they are much
easier and safer to use than assembly language syntax.

The Microsoft, Intel, Gnu and Clang C++ compilers have support for intrinsic functions. Most
of the intrinsic functions generate one machine instruction each. An intrinsic function is
therefore equivalent to an assembly instruction.

Coding with intrinsic functions is a kind of high-level assembly. It can easily be combined
with C++ language constructs such as i f-statements, loops, functions, classes and
operator overloading. Using intrinsic functions is an easier way of doing high level assembly
coding than using . i £ constructs etc. in an assembler or using the so-called high level
assembler (HLA).

The invention of intrinsic functions has made it much easier to do programming tasks that
previously required coding with assembly syntax. The advantages of using intrinsic
functions are:

¢ No need to learn assembly language syntax.

e Seamless integration into C++ code.

e Branches, loops, functions, classes, etc. are easily made with C++ syntax.

e The compiler takes care of calling conventions, register usage conventions, etc.

e The code is portable to almost all x86 platforms: 32-bit and 64-bit Windows, Linux,
Mac OS, etc. Some intrinsic functions can even be used on Itanium and other non-
x86 platforms.

e The code is compatible with Microsoft, Gnu, Clang and Intel compilers.

e The compiler takes care of register variables, register allocation and register spilling.
The programmer doesn't have to care about which register is used for which
variable.

¢ Different instances of the same inlined function or operator can use different
registers for its parameters. This eliminates the need for register-to-register moves.
The same function coded with assembly syntax would typically use a specific
register for each parameter; and a move instruction would be required if the value
happens to be in a different register.

e Itis possible to define overloaded operators for the intrinsic functions. For example,
the instruction that adds two 4-element vectors of floats is coded as Appes in
assembly language, and as mm add ps when intrinsic functions are used. But an
overloaded operator can be defined for the latter so that it is simply coded as a +

when using the so-called vector classes. This makes the code look like plain old
C++.

e The compiler can optimize the code further, for example by common subexpression
elimination, loop-invariant code motion, scheduling and reordering, etc. This would
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have to be done manually if assembly syntax was used. The Gnu and Intel compilers
provide the best optimization.

The disadvantages of using intrinsic functions are:
¢ Not all assembly instructions have intrinsic function equivalents.
e The function names are sometimes long and difficult to remember.
e An expression with many intrinsic functions looks kludgy and is difficult to read.
¢ Requires a good understanding of the underlying mechanisms.

e The compilers may not be able to optimize code containing intrinsic functions as
much as it optimizes other code, especially when constant propagation is needed.

e Unskilled use of intrinsic functions can make the code less efficient than simple C++
code.

e The compiler can modify the code or implement it in a less efficient way than the
programmer intended. It may be necessary to look at the code generated by the
compiler to see if it is optimized in the way the programmer intended.

e Mixture of mi28and m256 types can cause severe delays if the programmer
doesn't follow certain rules. Call mm256 zeroupper () before any transition from
modules compiled with AVX enabled to modules or library functions compiled
without AVX.

5.1 Using intrinsic functions for system code

Intrinsic functions are useful for making system code and access system registers that are
not accessible with standard C++. Some of these functions are listed below.

Functions for accessing system registers:

__rdtsc, readpmc, readmsr, readcr0O, readcr2, readcr3, readcrd,
__readcr8, writecr0O, writecr3, writecrd4, writecr8, writemsr,
_mm_getcsr, mm setcsr, getcallerseflags.

Functions for input and output:
__inbyte, inword, indword, outbyte, outword, outdword.

Functions for atomic memory read/write operations:
_InterlockedExchange, efC.

Functions for accessing rs and Gs segments:
__readfsbyte, writefsbyte, €tC.

Cache control instructions (Require SSE or SSEZ2 instruction set):
~mm_prefetch, mm stream si32, mm stream pi, mm stream sil28, ReadBarrier,
_WriteBarrier, ReadWriteBarrier, mm sfence.

Other system functions:
__cpuid, debugbreak, disable, enable.
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5.2 Using intrinsic functions for instructions not available in standard C++

Some simple instructions that are not available in standard C++ can be coded with intrinsic
functions, for example functions for bit-rotate, bit-scan, etc.:

_rotl8, rotr8, rotll6, rotrlé6, rotl, rotr, rotlé64, rotr64, BitScanForward,
_BitScanReverse.

5.3 Using intrinsic functions for vector operations

Vector instructions are very useful for improving the speed of code with inherent parallelism.
There are intrinsic functions for almost instructions on vector registers.

The use of these intrinsic functions for vector operations is thoroughly described in manual
1: "Optimizing software in C++",

5.4 Availability of intrinsic functions

The intrinsic functions are available on newer versions of Microsoft, Gnu and Intel
compilers. Most intrinsic functions have the same names in all three compilers. You have to
include a header file named intrin.h or emmintrin.h to get access to the intrinsic
functions. The Codeplay compiler has limited support for intrinsic vector functions, but the
function names are not compatible with the other compilers.

The intrinsic functions are listed in the help documentation for each compiler, in the
appropriate header files, in msdn.microsoft.com, in "Intel 64 and IA-32 Architectures
Software Developer’s Manual" (developer.intel.com) and in "Intel Intrinsic Guide"
(softwareprojects.intel.com/avx/).

6 Using inline assembly
Inline assembly is another way of putting assembly code into a C++ file. The keyword asm or

_asm Or asm Or asm tells the compiler that the code is assembly. Different compilers
have different syntaxes for inline assembly. The different syntaxes are explained below.
The advantages of using inline assembly are:

e |tis easy to combine with C++.

e Variables and other symbols defined in C++ code can be accessed from the
assembly code.

¢ Only the part of the code that cannot be coded in C++ is coded in assembly.

¢ All assembly instructions are available.

e The code generated is exactly what you write.

e Itis possible to optimize in details.

e The compiler takes care of calling conventions, name mangling and saving registers.
e The compiler can inline a function containing inline assembly.

e Portable to different x86 platforms when using the Intel compiler.
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The disadvantages of using inline assembly are:
o Different compilers use different syntax.
¢ Requires knowledge of assembly language.
e Requires a good understanding of how the compiler works. It is easy to make errors.

e The allocation of registers is mostly done manually. The compiler may allocate
different registers for the same variables.

e The compiler cannot optimize well across the inline assembly code.
¢ It may be difficult to control function prolog and epilog code.

¢ It may not be possible to define data.

e |t may not be possible to use macros and other directives.

¢ It may not be possible to make functions with multiple entries.

¢ You may inadvertently mix VEX and non-VEX instructions, whereby large penalties
are incurred (see chapter 13.1).

e The Microsoft compiler does not support inline assembly on 64-bit platforms.
e The Borland compiler is poor on inline assembly.

The following sections illustrate how to make inline assembly with different compilers.

6.1 MASM style inline assembly

The most common syntax for inline assembly is a MASM-style syntax. This is the easiest
way of making inline assembly and it is supported by most compilers, but not the Gnu
compiler. Unfortunately, the syntax for inline assembly is poorly documented or not
documented at all in the compiler manuals. | will therefore briefly describe the syntax here.

The following examples show a function that raises a floating point number x to an integer
power n. The algorithm is to multiply =%, 2, x*, %8, etc. according to each bit in the binary
representation of n. Actually, it is not necessary to code this in assembly because a good
compiler will optimize it almost as much when you just write pow (x, n). My purpose here is
just to illustrate the syntax of inline assembly.

First the code in C++ to illustrate the algorithm:

// Example 6.la. Raise double x to the power of int n.
double ipow (double x, int n) {

unsigned int nn = abs(n); // absolute value of n
double y = 1.0; // used for multiplication
while (nn != 0) { // loop for each bit in nn

if (nn & 1) y *= x; // multiply if bit = 1

X *= X; // square x

nn >>= 1; // get next bit of nn
}
if (n < 0) v =1.0 / vy; // reciprocal if n is negative
return y; // return y = pow(x,n)



And then the optimized code using inline assembly with MASM style syntax:

// Example 6.1b. MASM style inline assembly, 32 bit mode
double ipow (double x, int n) {

__asm {

mov eax, n // Move n to eax
// abs(n) is calculated by inverting all bits and adding 1 if n < O0:

cdg // Get sign bit into all bits of edx
xor eax, edx // Invert bits if negative
sub eax, edx // Add 1 if negative. Now eax = abs (n)
f1dl // st(0) = 1.0
jz L9 // End if n = 0
fld gword ptr x // st(0) = x, st(l) = 1.0
jmp L2 // Jump into loop

Ll: // Top of loop
fmul st(0), st(0) // Square x

L2: // Loop entered here
shr eax, 1 // Get each bit of n into carry flag
Jnc L1 // No carry. Skip multiplication, goto next
fmul st(l), st(0) // Multiply by x squared i times for bit # i
Jnz L1 // End of loop. Stop when nn = 0
fstp st (0) // Discard st (0)
test edx, edx // Test if n was negative
Jns L9 // Finish if n was not negative
f1d1 // st(0) = 1.0, st(l) = x"abs(n)
fdivr // Reciprocal

L9: // Finish

} // Result 1s in st (0)

#fpragma warning(disable:1011) // Don't warn for missing return value

}

Note that the function entry and parameters are declared with C++ syntax. The function
body, or part of it, can then be coded with inline assembly. The parameters x and n, which
are declared with C++ syntax, can be accessed directly in the assembly code using the
same names. The compiler simply replaces x and n in the assembly code with the
appropriate memory operands, probably [esp+4] and [esp+12]. If the inline assembly
code needs to access a variable that happens to be in a register, then the compiler will store
it to a memory variable on the stack and then insert the address of this memory variable in
the inline assembly code.

The result is returned in st (0) according to the 32-bit calling convention. The compiler will
normally issue a warning because there is no return y; statement in the end of the
function. This statement is not needed if you know which register to return the value in. The
#pragma warning(disable:1011) removes the warning. If you want the code to work with
different calling conventions (e.g. 64-bit systems) then it is necessary to store the result in a
temporary variable inside the assembly block:

// Example 6.lc. MASM style, independent of calling convention
double ipow (double x, int n) {

double result; // Define temporary variable for result
__asm {

mov eax, n

cdqg

xXor eax, edx
sub eax, edx
fld1l

jz L9

fld gword ptr x
Jmp L2
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Ll:fmul st (0), st (0)
L2:shr eax, 1
jnc L1
fmul st(l), st (0)
jnz L1
fstp st (0)
test edx, edx
jns L9
f1dl
fdivr
L9:fstp gword ptr result // store result to temporary variable
}

return result;

}

Now the compiler takes care of all aspects of the calling convention and the code works on
all x86 platforms.

The compiler inspects the inline assembly code to see which registers are modified. The
compiler will automatically save and restore these registers if required by the register usage
convention. In some compilers it is not allowed to modify register ebp or ebx in the inline
assembly code because these registers are needed for a stack frame. The compiler will
generally issue a warning in this case.

It is possible to remove the automatically generated prolog and epilog code by adding
__declspec (naked) to the function declaration. In this case it is the responsibility of the
programmer to add any necessary prolog and epilog code and to save any modified
registers if necessary. The only thing the compiler takes care of in a naked function is name
mangling. Automatic variable name substitution may not work with naked functions because
it depends on how the function prolog is made. A naked function cannot be inlined.

Accessing reqister variables

Register variables cannot be accessed directly by their symbolic names in MASM-style
inline assembly. Accessing a variable by name in an inline assembly code will force the
compiler to store the variable to a temporary memory location.

If you know which register a variable is in then you can simply write the name of the
register. This makes the code more efficient but less portable.

For example, if the code in the above example is used in 64-bit Windows, then x will be in
register xvm0 and n will be in register Epx. Taking advantage of this knowledge, we can
improve the code:

// Example 6.1d. MASM style, 64-bit Windows
double ipow (double x, int n) {

const double one = 1.0; // define constant 1.0
__asm { // x 1s in xmmO

mov eax, edx // get n into eax

cdqg

xXor eax, edx
sub eax, edx

movsd xmml, one // load 1.0
jz L9
Jmp L2
Ll:mulsd xmm0O, xmmO // square x
L2:shr eax, 1
jnc L1
mulsd xmml, xmmO // Multiply by x squared i1 times
jnz L1
movsd xmmO, xmml // Put result in xmm0

test edx, edx
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Jns L9
movsd xmmO, one
divsd xmm0O, xmml // Reciprocal
L9: }
#fpragma warning(disable:1011) // Don't warn for missing return value

}

In 64-bit Linux we will have n in register Ep1 so the line mov eax,edx should be changed
10 mov eax, edi.

Accessing class members and structure members
Let's take as an example a C++ class containing a list of integers:

// Example 6.2a. Accessing class data members
// define C++ class
class MyList {

protected:
int length; // Number of items in list
int buffer[100]; // Store items
public:
MyList () ; // Constructor
void AttItem(int item); // Add item to list
int Sum() ; // Compute sum of items
bi
MyList::MyList () { // Constructor

length = 0;}
void MyList::AttItem(int item) { // Add item to list
if (length < 100) {
buffer[length++] = item;

}

int MyList::Sum() { // Member function Sum
int i, sum = 0;
for (i = 0; i < length; i++) sum += buffer[i];

return sum; }

Below, | will show how to code the member function MyList: : Sum in inline assembly. |
have not tried to optimize the code, my purpose here is simply to show the syntax.

Class members are accessed by loading 'this' into a pointer register and addressing class
data members relative to the pointer with the dot operator (.).

// Example 6.2b. Accessing class members (32-bit)
int MyList::Sum() {

__asm {
mov ecx, this // 'this' pointer
XOr eax, eax // sum = 0
xor edx, edx // loop index, i = 0
cmp [ecx].length, 0 // if (this->length != 0)
Jje L9
Ll: add eax, [ecx].buffer[edx*4] // sum += buffer[i]
add edx, 1 // i++
cmp edx, [ecx].length // while (i < length)
ib L1
L9:
} // Return value 1is in eax

#pragma warning (disable:1011)
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Here the 'this' pointer is accessed by its name 'this', and all class data members are
addressed relative to 'this'. The offset of the class member relative to 'this' is obtained by
writing the member name preceded by the dot operator. The index into the array named
buffer must be multiplied by the size of each element in buffer [edx*4].

Some 32-bit compilers for Windows put 'this'in ecx, so the instruction mov ecx, this can
be omitted. 64-bit systems require 64-bit pointers, so ecx should be replaced by rcx and
edx by rdx. 64-bit Windows has 'this'in rcx, while 64-bit Linux has 'this'in rdi.

Structure members are accessed in the same way by loading a pointer to the structure into
a register and using the dot operator. There is no syntax check against accessing private
and protected members. There is no way to resolve the ambiguity if more than one
structure or class has a member with the same name. The MASM assembler can resolve
such ambiguities by using the assume directive or by putting the name of the structure
before the dot, but this is not possible with inline assembly.

Calling functions

Functions are called by their name in inline assembly. Member functions can only be called
from other member functions of the same class. Overloaded functions cannot be called
because there is no way to resolve the ambiguity. It is not possible to use mangled function
names. It is the responsibility of the programmer to put any function parameters on the
stack or in the right registers before calling a function and to clean up the stack after the
call. It is also the programmer's responsibility to save any registers you want to preserve
across the function call, unless these registers have callee-save status.

Because of these complications, | will recommend that you go out of the assembly block
and use C++ syntax when making function calls.

Syntax overview

The syntax for MASM-style inline assembly is not well described in any compiler manual |
have seen. | will therefore summarize the most important rules here.

In most cases, the MASM-style inline assembly is interpreted by the compiler without
invoking any assembler. You can therefore not assume that the compiler will accept
anything that the assembler understands.

The inline assembly code is marked by the keyword  asm. Some compilers allow the alias
_asm. The assembly code must be enclosed in curly brackets {} unless there is only one
line. The assembly instructions are separated by newlines. Alternatively, you may separate
the assembly instructions by the  asm keyword without any semicolons.

Instructions and labels are coded in the same way as in MASM. The size of memory
operands can be specified with the pTr operator, for example INC DWORD PTR [EST]. The
names of instructions and registers are not case sensitive.

Variables, functions, and goto labels declared in C++ can be accessed by the same names
in the inline assembly code. These names are case sensitive.

Data members of structures, classes and unions are accessed relative to a pointer register
using the dot operator.

Comments are initiated with a semicolon (;) or a double slash (//).

41



Hard-coded opcodes are made with emit followed by a byte constant, where you would
use DB In MASM. For example emit 0x90 iS equivalent to NOP.

Directives and macros are not allowed.
The compiler takes care of calling conventions and register saving for the function that

contains inline assembly, but not for any function calls from the inline assembly.

Compilers using MASM style inline assembly

MASM-style inline assembly is supported by 16-bit and 32-bit Microsoft C++ compilers, but
the 64-bit Microsoft compiler has no inline assembly.

The Intel C++ compiler supports MASM-style inline assembly in both 32-bit and 64-bit
Windows as well as 32-bit and 64-bit Linux (and Mac OS ?). This is the preferred compiler
for making portable code with inline assembly. The Intel compiler under Linux requires the
command line option -use-msasm to recognize this syntax for inline assembly. Only the
keyword asm works in this case, not the synonyms asm or asm . The Intel compiler
converts the MASM syntax to AT&T syntax before sending it to the assembler. The Intel
compiler can therefore be useful as a syntax converter.

The MASM-style inline assembly is also supported by Borland, Digital Mars, Watcom and
Codeplay compilers. The Borland assembler is not up to date and the Watcom compiler has
some limitations on inline assembly.

6.2 Gnu style inline assembly

Inline assembly works quite differently on the Gnu compiler because the Gnu compiler
compiles via assembly rather than producing object code directly, as most other compilers
do. The assembly code is entered as a string constant which is passed through to the
assembler with very little change. The default syntax is the AT&T syntax that the Gnu
assembler uses.

The Gnu-style inline assembly has the advantage that you can pass on any instruction or
directive to the assembler. Everything is possible. The disadvantage is that the syntax is
very elaborate and difficult to learn, as the examples below show.

The Gnu-style inline assembly is supported by the Gnu compiler and the Intel compiler for
Linux in both 32-bit and 64-bit mode.

AT&T syntax
Let's return to example 6.1b and translate it to Gnu style inline assembly with AT&T syntax:

// Example 6.le. Gnu-style inline assembly, AT&T syntax
double ipow (double x, int n) {

double y;
__asm__
"cltd \n" // cdgq
"xorl %$%edx, %$%eax \n"
"subl %$%edx, %%eax \n"
"fldl \n"
"jz 9f \n" // Forward jump to nearest 9:
"f1dl % [xx] \n" // Substituted with x
"Jmp 2f \n" // Forward jump to nearest 2:
"l \n" // Local label 1:
"fmul %$%st(0), %%st(0) \n"
"2 \n" // Local label 2:



"shrl $1, %%eax \n"

"Jnc 1b \n" // Backward jump to nearest 1:
"fmul %$%st(0), %%st(l) \n"

"jnz 1b \n" // Backward jump to nearest 1:
"fstp %$%st (0) \n"

"testl %%edx, %%edx \n"

"ins 9f \n" // Forward jump to nearest 9:
"fldl \n"

"fdivp %%st(0), %%st(1l)\n"

"9: \n" // Assembly string ends here

// Use extended assembly syntax to specify operands:
// Output operands:
"=t" (y) // Output top of stack to y

// Input operands:
[xx] "m" (x), "a" (n) // Input operand %[xx] = X, eax = n

// Clobbered registers:
"Sedx", "%st(l)" // Clobber edx and st (1)
) i // __asm__ statement ends here

return y;

}

We immediately notice that the syntax is very different from the previous examples. Many of
the instruction codes have suffixes for specifying the operand size. Integer instructions use
b for BYTE, w for worD, 1 for bworD, g for oworD. Floating point instructions use s for DWORD
(float), 1 for QworD (double), t for TBYTE (1ong double). Some instruction codes are
completely different, for example cpg is changed to cr.Tp. The order of the operands is the
opposite of MASM syntax. The source operand comes before the destination operand.
Register names have <2 prefix, which is changed to ¢ before the string is passed on to the
assembler. Constants have $ prefix. Memory operands are also different. For example,
[ebx+ecx*4+20h] IS changed to 0x20 (%%ebx, $%ecx, 4).

Jump labels can be coded in the same way as in MASM, e.g. L1:, L2, but | have chosen to
use the syntax for local labels, which is a decimal number followed by a colon. The jump
instructions can then use jmp 1b for jumping backwards to the nearest preceding 1:
label, and smp 1f for jumping forwards to the nearest following 1: label. The reason why |
have used this kind of labels is that the compiler will produce multiple instances of the inline
assembly code if the function is inlined, which is quite likely to happen. If we use normal
labels like 1.1 : then there will be more than one label with the same name in the final
assembly file, which of course will produce an error. If you want to use normal labels then
add attribute ((noinline)) to the function declaration to prevent inlining of the
function.

The Gnu style inline assembly does not allow you to put the names of local C++ variables
directly into the assembly code. Only global variable names will work because they have the
same names in the assembly code. Instead you can use the so-called extended syntax as
illustrated above. The extended syntax looks like this:

__asm___ ("assembly code string" : [output list] : [input list]
[clobbered registers list] );

The assembly code string is a string constant containing assembly instructions separated by
newline characters (\n).

In the above example, the output listis "=t" (y). t means the top-of-stack floating point
register st (0), and y means that this should be stored in the C++ variable named v after
the assembly code string.
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There are two input operands in the input list. [xx] "m" (x) means replace %[xx] inthe
assembly string with a memory operand for the C++ variable x. "a" (n) means load the
C++ variable n into register eax before the assembly string. There are many different
constraints symbols for specifying different kinds of operands and registers for input and
output. See the GCC manual for details.

The clobbered registers list "sedx", "sst (1)" tells that registers edx and st (1) are
modified by the inline assembly code. The compiler would falsely assume that these
registers were unchanged if they didn't occur in the clobber list.

Intel syntax

The above example will be a little easier to code if we use Intel syntax for the assembly
string. The Gnu assembler now accepts Intel syntax with the directive .intel syntax
noprefix. The noprefix means that registers don't need a %-sign as prefix.

// Example 6.1f. Gnu-style inline assembly, Intel syntax
double ipow (double x, int n) {

double vy;
__asm__
".intel syntax noprefix \n" // use Intel syntax for convenience
"cdg \n"
"xor eax, edx \n"
"sub eax, edx \n"
"fldl \n"
"jz Of \n"
".att syntax prefix \n" // AT&T syntax needed for %[xx]
"f1dl $[xx] \n" // memory operand substituted with x
".intel syntax noprefix \n" // switch to Intel syntax again
"jmp 2f \n"
"1 \n"
"fmul st (0), st(0) \n"
"2 \n"
"shr eax, 1 \n"
"Jnc 1b \n"
"frul st (1), st(0) \n"
"jnz 1b \n"
"fstp st (0) \n"
"test edx, edx \n"
"Jns 9f \n"
"£1dl \n"
"fdivrp \n"
"9 \n"
".att syntax prefix \n" // switch back to AT&T syntax

// output operands:

"=t" (y) // output in top-of-stack goes to y
// input operands:

[xx] "m" (x), "a" (n) // input memory %[x] for x, eax for n
// clobbered registers:

"Sedx", "%st(l)" ); // edx and st (l) are modified

return y;

Here, | have inserted .intel syntax noprefix inthe start of the assembly string which
allows me to use Intel syntax for the instructions. The string must end with .att syntax
prefix to return to the default AT&T syntax, because this syntax is used in the subsequent
code generated by the compiler. The instruction that loads the memory operand x must use
AT&T syntax because the operand substitution mechanism uses AT&T syntax for the
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operand substituted for % [xx]. The instruction £1d1 %[xx] must therefore be written in
AT&T syntax. We can still use AT&T-style local labels. The lists of output operands, input
operands and clobbered registers are the same as in example 6.1e.

6.3 Inline assembly in Delphi Pascal

It is possible to make functions in inline assembly in the Delphi Pascal compiler. The syntax
resembles Intel/MASM syntax. See the compiler manual for details.

7 Using an assembler
There are certain limitations on what you can do with intrinsic functions and inline assembly.

These limitations can be overcome by using an assembler. The principle is to write one or
more assembly files containing the most critical functions of a program and writing the less
critical parts in C++. The different modules are then linked together into an executable file.
The advantages of using an assembler are:

e There are almost no limitations on what you can do.

e You have complete control of all details of the final executable code.

¢ All aspects of the code can be optimized, including function prolog and epilog,
parameter transfer methods, register usage, data alignment, etc.

e Itis possible to make functions with multiple entries.

e |tis possible to make code that is compatible with multiple compilers and multiple
operating systems (see page 52).

¢ MASM and some other assemblers have a powerful macro language which opens
up possibilities that are absent in most compiled high-level languages (see page
114).
The disadvantages of using an assembler are:
¢ Assembly language is difficult to learn. There are many instructions to remember.
e Coding in assembly takes more time than coding in a high level language.

e The assembly language syntax is not fully standardized.

¢ Assembly code tends to become poorly structured and spaghetti-like. It takes a lot of
discipline to make assembly code well structured and readable for others.

o Assembly code is not portable between different microprocessor architectures.

e The programmer must know all details of the calling conventions and obey these
conventions in the code.

e The assembler provides very little syntax checking. Many programming errors are
not detected by the assembiler.

45



e There are many things that you can do wrong in assembly code and the errors can
have serious consequences.

e You may inadvertently mix VEX and non-VEX vector instructions. This incurs a large
penalty (see chapter 13.1).

e Errorsin assembly code can be difficult to trace. For example, the error of not saving
a register can cause a completely different part of the program to malfunction.

¢ Assembly language is not suitable for making a complete program. Most of the
program has to be made in a different programming language.

The best way to start if you want to make assembly code is to first make the entire program
in C or C++. Optimize the program with the use of the methods described in manual 1:
"Optimizing software in C++". If any part of the program needs further optimization then
isolate this part in a separate module. Then translate the critical module from C++ to
assembly. There is no need to do this translation manually. Most C++ compilers can
produce assembly code. Turn on all relevant optimization options in the compiler when
translating the C++ code to assembly. The assembly code thus produced by the compiler is
a good starting point for further optimization. The compiler-generated assembly code is sure
to have the calling conventions right. (The output produced by 64-bit compilers for Windows
is not yet fully compatible with any assembler).

Inspect the assembly code produced by the compiler to see if there are any possibilities for
further optimization. Sometimes compilers are very smart and produce code that is better
optimized than what an average assembly programmer can do. In other cases, compilers
are incredibly stupid and do things in very awkward and inefficient ways. It is in the latter
case that it is justified to spend time on assembly coding.

Most IDE's (Integrated Development Environments) provide a way of including assembly
modules in a C++ project. For example in Microsoft Visual Studio, you can define a "custom
build step" for an assembly source file. The specification for the custom build step may, for
example, look like this. Command line: m1 /c /Cx /Zi /coff $(InputName) .asm.
Outputs: s (InputName) .ob7. Alternatively, you may use a makefile (see page 51) or a
batch file.

The C++ files that call the functions in the assembly module should include a header file
(* .h) containing function prototypes for the assembly functions. It is recommended to add
extern "C" to the function prototypes to remove the compiler-specific name mangling
codes from the function names.

Examples of assembly functions for different platforms are provided in paragraph 4.5, page
31ff.

7.1 Static link libraries

It is convenient to collect assembled code from multiple assembly files into a function
library. The advantages of organizing assembly modules into function libraries are:

e The library can contain many functions and modules. The linker will automatically
pick the modules that are needed in a particular project and leave out the rest so
that no superfluous code is added to the project.

e A function library is easy and convenient to include in a C++ project. All C++
compilers and IDE's support function libraries.
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e A function library is reusable. The extra time spent on coding and testing a function
in assembly language is better justified if the code can be reused in different
projects.

¢ Making as a reusable function library forces you to make well tested and well
documented code with a well defined functionality and a well defined interface to the
calling program.

e Areusable function library with a general functionality is easier to maintain and verify
than an application-specific assembly code with a less well-defined responsibility.

e A function library can be used by other programmers who have no knowledge of
assembly language.

A static link function library for Windows is built by using the library manager (e.g. 1ib.exe)
to combine one or more * . obj files into a *. 11ib file.

A static link function library for Linux is built by using the archive manager (ar) to combine
one or more * . o files into an * . a file.

A function library must be supplemented by a header file (* . h) containing function
prototypes for the functions in the library. This header file is included in the C++ files that
call the library functions (e.g. #include "mylibrary.h").

It is convenient to use a makefile (see page 51) for managing the commands necessary for
building and updating a function library.

7.2 Dynamic link libraries

The difference between static linking and dynamic linking is that the static link library is
linked into the executable program file so that the executable file contains a copy of the
necessary parts of the library. A dynamic link library (*.d11 in Windows, * . so in Linux) is
distributed as a separate file which is loaded at runtime by the executable file.

The advantages of dynamic link libraries are:

e Only one instance of the dynamic link library is loaded into memory when multiple
programs running simultaneously use the same library.

e The dynamic link library can be updated without modifying the executable file.

e A dynamic link library can be called from most programming languages, such as
Pascal, C#, Visual Basic (Calling from Java is possible but difficult).

The disadvantages of dynamic link libraries are:
e The whole library is loaded into memory even when only a small part of it is needed.

¢ Loading a dynamic link library takes extra time when the executable program file is
loaded.

e Calling a function in a dynamic link library is less efficient than a static library
because of extra call overhead and because of less efficient code cache use.

o The dynamic link library must be distributed together with the executable file.
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e Multiple programs installed on the same computer must use the same version of a
dynamic link library. This can cause many compatibility problems.

A DLL for Windows is made with the Microsoft linker (1ink.exe). The linker must be
supplied one or more .obj or . 1ib files containing the necessary library functions and a
D11Entry function, which just returns 1. A module definition file (* . def) is also needed.
Note that DLL functions in 32-bit Windows use the  stdcall calling convention, while
static link library functions use the  cdec1 calling convention by default. An example
source code can be found in www.agner.org/random/randoma.zip. Further instructions can
be found in the Microsoft compiler documentation and in Iczelion's tutorials at
win32asm.cjb.net.

I have no experience in making dynamic link libraries (shared objects) for Linux.

7.3 Libraries in source code form

A problem with subroutine libraries in binary form is that the compiler cannot optimize the
function call. This problem can be solved by supplying the library functions as C++ source
code.

If the library functions are supplied as C++ source code then the compiler can optimize
away the function calling overhead by inlining the function. It can optimize register allocation
across the function. It can do constant propagation. It can move invariant code when the
function is called inside a loop, etc.

The compiler can only do these optimizations with C++ source code, not with assembly
code. The code may contain inline assembly or intrinsic function calls. The compiler can do
further optimizations if the code uses intrinsic function calls, but not if it uses inline
assembly. Note that different compilers will not optimize the code equally well.

If the compiler uses whole program optimization then the library functions can simply be
supplied as a C++ source file. If not, then the library code must be included with #include
statements in order to enable optimization across the function calls. A function defined in an
included file should be declared static and/or inline in order to avoid clashes between
multiple instances of the function.

Some compilers with whole program optimization features can produce half-compiled object
files that allow further optimization at the link stage. Unfortunately, the format of such files is
not standardized - not even between different versions of the same compiler. It is possible
that future compiler technology will allow a standardized format for half-compiled code. This
format should, as a minimum, specify which registers are used for parameter transfer and
which registers are modified by each function. It should preferably also allow register
allocation at link time, constant propagation, common subexpression elimination across
functions, and invariant code motion.

As long as such facilities are not available, we may consider using the alternative strategy of
putting the entire innermost loop into an optimized library function rather than calling the
library function from inside a C++ loop. This solution is used in Intel's Math Kernel Library
(www.intel.com). If, for example, you need to calculate a thousand logarithms then you can
supply an array of thousand arguments to a vector logarithm function in the library and
receive an array of thousand results back from the library. This has the disadvantage that
intermediate results have to be stored in arrays rather than transferred in registers.
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7.4 Making classes in assembly

Classes are coded as structures in assembly and member functions are coded as functions
that receive a pointer to the class/structure as a parameter.

It is not possible to apply the extern "c" declaration to a member function in C++
because extern "c" refers to the calling conventions of the C language which doesn't
have classes and member functions. The most logical solution is to use the mangled
function name. Returning to example 6.2a and b page 40, we can write the member function
int MyList::Sum() with a mangled name as follows:

; Example 7.la (Example 6.2b translated to stand alone assembly)
; Member function, 32-bit Windows, Microsoft compiler

; Define structure corresponding to class MyList:

MyList  STRUC

length DD 2 ; length is a reserved name. Use length
buffer DD 100 DUP (?) ; int buffer[100];

MyList  ENDS

; int MyList::Sum()

; Mangled function name compatible with Microsoft compiler (32 bit):
?Sum@MyList@Q@QAEHXZ PROC near

; Microsoft compiler puts 'this' in ECX

assume ecx: ptr MyList ; ecx points to structure MyList
XOr eax, eax ; sum = 0
xor edx, edx ; Loop index 1 = 0
cmp [ecx].length , 0 ; this->length
je L9 ; Skip if length = 0
Ll: add eax, [ecx].buffer[edx*4] ; sum += buffer[i]
add edx, 1 ; 1++
cmp edx, [ecx].length ; while (i < length)
Jjb L1 ; Loop
L9: ret ; Return value is in eax
?2Sum@MyList@Q@QAEHXZ ENDP ; End of int MyList::Sum()
assume ecx: nothing ; ecx no longer points to anything

The mangled function name 2sum@MyList@ROAEHXZ IS compiler specific. Other compilers
may have other name-mangling codes. Furthermore, other compilers may put 'this' on the
stack rather than in a register. These incompatibilities can be solved by using a friend
function rather than a member function. This solves the problem that a member function
cannot be declared extern "c". The declaration in the C++ header file must then be
changed to the following:

// Example 7.1b. Member function changed to friend function:

// An incomplete class declaration is needed here:
class MyList;

// Function prototype for friend function with 'this' as parameter:
extern "C" int MyList Sum(MyList * ThisP);

// Class declaration:

class MyList {
protected:
int length; // Data members:
int buffer[100];

public:
MyList () ; // Constructor
void AttItem(int item); // Add item to list

// Make MyList Sum a friend:
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friend int MyList Sum(MyList * ThisP);

// Translate Sum to MyList Sum by inline call:
int Sum() {return MyList Sum(this);}
};

The prototype for the friend function must come before the class declaration because some
compilers do not allow extern "c" inside the class declaration. An incomplete class
declaration is needed because the friend function needs a pointer to the class.

The above declarations will make the compiler replace any call to MmyList: :sum by a call to
MyList Sum because the latter function is inlined into the former. The assembly
implementation of MyList sum does not need a mangled name:

; Example 7.l1c. Friend function, 32-bit mode

; Define structure corresponding to class MyList:

MyList STRUC

length DD 2 ; length is a reserved name. Use length
buffer DD 100 DUP (?) ; int buffer[100];

MyList ENDS

; extern "C" friend int MyList Sum()
_MyList Sum PROC near
; Parameter ThisP 1is on stack

mov ecx, [esp+4] ; ThisP
assume ecx: ptr MyList ; ecx points to structure MyList
XOr eax, eax ; sum = 0
xor edx, edx ; Loop index i = 0
cmp [ecx].length , 0 ; this->length
je L9 ; Skip i1if length = 0
Ll: add eax, [ecx].buffer[edx*4] ; sum += buffer[i]
add edx, 1 ; 1++
cmp edx, [ecx].length ; while (i < length)
Jjb L1 ; Loop
L9: ret ; Return value is in eax
_MyList Sum ENDP ; End of int MyList Sum()
assume ecx: nothing ; ecx no longer points to anything

7.5 Thread-safe functions

A thread-safe or reentrant function is a function that works correctly when it is called
simultaneously from more than one thread. Multithreading is used for taking advantage of
computers with multiple CPU cores. It is therefore reasonable to require that a function
library intended for speed-critical applications should be thread-safe.

Functions are thread-safe when no variables are shared between threads, except for
intended communication between the threads. Constant data can be shared between
threads without problems. Variables that are stored on the stack are thread-safe because
each thread has its own stack. The problem arises only with static variables stored in the
data segment. Static variables are used when data have to be saved from one function call
to the next. It is possible to make thread-local static variables, but this is inefficient and
system-specific.

The best way to store data from one function call to the next in a thread-safe way is to let
the calling function allocate storage space for these data. The most elegant way to do this is
to encapsulate the data and the functions that need them in a class. Each thread must
create an object of the class and call the member functions on this object. The previous
paragraph shows how to make member functions in assembly.
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If the thread-safe assembly function has to be called from C or another language that does
not support classes, or does so in an incompatible way, then the solution is to allocate a
storage buffer in each thread and supply a pointer to this buffer to the function.

7.6 Makefiles

A make utility is a universal tool to manage software projects. It keeps track of all the source
files, object files, library files, executable files, etc. in a software project. It does so by means
of a general set of rules based on the date/time stamps of all the files. If a source file is
newer than the corresponding object file then the object file has to be re-made. If the object
file is newer than the executable file then the executable file has to be re-made.

Any IDE (Integrated Development Environment) contains a make utility which is activated
from a graphical user interface, but in most cases it is also possible to use a command-line
version of the make utility. The command line make utility (called make or nmake) is based
on a set of rules that you can define in a so-called makefile. The advantage of using a
makefile is that it is possible to define rules for any type of files, such as source files in any
programming language, object files, library files, module definition files, resource files,
executable files, zip files, etc. The only requirement is that a tool exists for converting one
type of file to another and that this tool can be called from a command line with the file
names as parameters.

The syntax for defining rules in a makefile is almost the same for all the different make
utilities that come with different compilers for Windows and Linux.

Many IDE's also provide features for user-defined make rules for file types not known to the
IDE, but these utilities are often less general and flexible than a stand-alone make utility.

The following is an example of a makefile for making a function library mylibrary.1lib
from three assembly source files funcl.asm, func2.asm, func3.asm and packing it
together with the corresponding header file mylibrary.h into a zip file mylibrary.zip.

# Example 7.2. makefile for mylibrary
mylibrary.zip: mylibrary.lib mylibrary.h
wzzip $@ $°?

mylibrary.lib: funcl.obj func2.obj func3.obj
lib /out:$Q@ $**

.asm.obj
ml /c /Cx /coff /Fo$Q@ S$*.asm

Theline mylibrary.zip: mylibrary.lib mylibrary.h tells that the file
mylibrary.zipisbuiltfrommylibrary.lib and mylibrary.h, and that it must be re-
built if any of these has been modified later than the zip file. The next line, which must be
indented, specifies the command needed for building the target file mylibrary.zip from
its dependents mylibrary.lib andmylibrary.h. (wzzip is a command line version of
WinZip. Any other command line zip utility may be used). The next two lines tell how to build
the library file mylibrary.1ib from the three object files. The line .asm.ob7 is a generic
rule. It tells that any file with extension . ob7 can be built from a file with the same name and
extension . asm by using the rule in the following indented line.

The build rules can use the following macros for specifying file names:

$@ = Current target's full name
$< = Full name of dependent file
$* = Current target's base name without extension
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s$** = All dependents of the current target, separated by spaces (nmake)
$+ = All dependents of the current target, separated by spaces (Gnu make)
$? = All dependents with a later timestamp than the current target

The make utility is activated with the command
nmake /Fmakefile oOr
make -f makefile.

See the manual for the particular make utility for details.

8 Making function libraries compatible with multiple

compilers and platforms

There are a number of compatibility problems to take care of if you want to make a function
library that is compatible with multiple compilers, multiple programming languages, and
multiple operating systems. The most important compatibility problems have to do with:

1. Name mangling
2. Calling conventions
3. Object file formats

The easiest solution to these portability problems is to make the code in a high level
language such as C++ and make any necessary low-level constructs with the use of
intrinsic functions or inline assembly. The code can then be compiled with different
compilers for the different platforms. Note that not all C++ compilers support intrinsic
functions or inline assembly and that the syntax may differ.

If assembly language programming is necessary or desired then there are various methods
for overcoming the compatibility problems between different x86 platforms. These methods
are discussed in the following paragraphs.

8.1 Supporting multiple name mangling schemes

The easiest way to deal with the problems of compiler-specific name mangling schemes is
to turn off name mangling with the extern "c" directive, as explained on page 30.

The extern "c" directive cannot be used for class member functions, overloaded
functions and operators. This problem can be used by making an inline function with a
mangled name to call an assembly function with an unmangled name:

// Example 8.1. Avoid name mangling of overloaded functions in C++
// Prototypes for unmangled assembly functions:

extern "C" double power d (double x, double n);

extern "C" double power i (double x, int n);

// Wrap these into overloaded functions:
inline double power (double x, double n) {return power d(x, n)
inline double power (double x, int n) {return power 1i(x, n)

’
’

The compiler will simply replace a call to the mangled function with a call to the appropriate
unmangled assembly function without any extra code. The same method can be used for
class member functions, as explained on page 49.
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However, in some cases it is desired to preserve the name mangling. Either because it
makes the C++ code simpler, or because the mangled names contain information about
calling conventions and other compatibility issues.

An assembly function can be made compatible with multiple name mangling schemes
simply by giving it multiple public names. Returning to example 4.1c page 32, we can add
mangled names for multiple compilers in the following way:

; Example 8.2. (Example 4.l1c rewritten)
; Function with multiple mangled names (32-bit mode)

; double sinxpnx (double x, int n) {return sin(x) + n*x;}
ALIGN 4
_sinxpnx PROC NEAR ; extern "C" name

; Make public names for each name mangling scheme:

?sinxpnx@@YANNH@Z LABEL NEAR ; Microsoft compiler
@sinxpnx$qgdi LABEL NEAR ; Borland compiler
_Z7sinxpnxdi LABEL NEAR ; Gnu compiler for Linux
_ Z7sinxpnxdi LABEL NEAR ; Gnu compiler for Windows and Mac OS
PUBLIC ?sinxpnx@@YANNH@Z, @sinxpnx$qgdi, Z7sinxpnxdi,  Z7sinxpnxdi
; parameter x = [ESP+4]
; parameter n = [ESP+12]
; return value = ST (0)
fild dword ptr [esp+l1l2] ; n
fld gword ptr [esp+4] ;X
fmul st(l), st (0) ; n*x
fsin ; sin (x)
fadd ; sin(x) + n*x
ret ; return value 1is 1in st (0)

_sinxpnx ENDP

Example 8.2 works with most compilers in both 32-bit Windows and 32-bit Linux because
the calling conventions are the same. A function can have multiple public names and the
linker will simply search for a name that matches the call from the C++ file. But a function
call cannot have more than one external name.

The syntax for name mangling for different compilers is described in manual 5: "Calling
conventions for different C++ compilers and operating systems". Applying this syntax
manually is a difficult job. It is much easier and safer to generate each mangled name by
compiling the function in C++ with the appropriate compiler. Command line versions of most
compilers are available for free or as trial versions.

The Intel, Digital Mars and Codeplay compilers for Windows are compatible with the
Microsoft name mangling scheme. The Intel compiler for Linux is compatible with the Gnu
name mangling scheme. Gnu compilers version 2.x and earlier have a different name
mangling scheme which | have not included in example 8.2. Mangled names for the
Watcom compiler contain special characters which are only allowed by the Watcom
assembler.

8.2 Supporting multiple calling conventions in 32 bit mode

Member functions in 32-bit Windows do not always have the same calling convention. The
Microsoft-compatible compilers use the  thiscall convention with 'this'in register ecx,
while Borland and Gnu compilers use the  cdec1 convention with 'this' on the stack. One
solution is to use friend functions as explained on page 49. Another possibility is to make a
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function with multiple entries. The following example is a rewrite of example 7.1a page 49
with two entries for the two different calling conventions:

; Example 8.3a (Example 7.la with two entries)
; Member function, 32-bit mode
; int MyList::Sum()

; Define structure corresponding to class MyList:
MyList  STRUC

length DD 2

buffer DD 100 DUP (?)

MyList  ENDS

_MyList Sum PROC NEAR ; for extern "C" friend function

; Make mangled names for compilers with  cdecl convention:
@MyList@Sum$Sqgv LABEL NEAR ; Borland compiler
_ZN6MyList3SumEv LABEL NEAR ; Gnu comp. for Linux
__ZN6MyList3SumEv LABEL NEAR ; Gnu comp. for Windows and Mac OS
PUBLIC @MyList@Sum$qgv, ZN6MyList3SumEv,  ZN6MyList3SumEv

; Move 'this' from the stack to register ecx:
mov ecx, [esp+4]

; Make mangled names for compilers with  thiscall convention:

?Sum@MyList@@QAEHXZ LABEL NEAR ; Microsoft compiler
PUBLIC ?Sum@MyList@@QAEHXZ
assume ecx: ptr MyList ; ecx points to structure MyList
XOr eax, eax ; sum = O
xor edx, edx ; Loop index 1 = 0
cmp [ecx].length , 0 ; this->length
je L9 ; Skip if length = 0
Ll: add eax, [ecx].buffer[edx*4] ; sum += buffer[i]
add edx, 1 ; 1++
cmp edx, [ecx].length ; while (i < length)
Jjb L1 ; Loop
L9: ret ; Return value is in eax
_MyList Sum ENDP ; End of int MyList::Sum()
assume ecx: nothing ; ecx no longer points to anything

The difference in name mangling schemes is actually an advantage here because it enables
the linker to lead the call to the entry that corresponds to the right calling convention.

The method becomes more complicated if the member function has more parameters.
Consider the function void MyList::AttItem(int item) on page 40. The thiscall
convention has the parameter 'this'in ecx and the parameter item on the stack at

[esp+4] and requires that the stack is cleaned up by the function. The  cdecl convention
has both parameters on the stack with 'this' at [esp+4] and item at [esp+8] and the stack
cleaned up by the caller. A solution with two function entries requires a jump:

; Example 8.3b
; void MyList::AttItem(int item);

_MyList AttItem PROC NEAR ; for extern "C" friend function

; Make mangled names for compilers with  cdecl convention:
@MyList@AttItem$gil LABEL NEAR ; Borland compiler
_ZNéeMyList7AttItemEi LABEL NEAR ; Gnu comp. for Linux
___ZN6MyList7AttItemEi LABEL NEAR ; Gnu comp. for Windows and Mac OS

PUBLIC @MyList@AttItemSqgi, ZNé6MyList7AttItemEi,  ZN6MyList7AttItemEi

; Move parameters into registers:
mov ecx, [esp+t4] ; ecx = this
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mov edx, [esp+8] ; edx = item
Jmp LO ; Jump into common section

; Make mangled names for compilers with _ thiscall convention:
?AttItem@MyList@Q@QAEXH@Z LABEL NEAR; Microsoft compiler
PUBLIC ?AttItem@MyList@EQAEXHQZ

pop eax ; Remove return address from stack
pop edx ; Get parameter 'item' from stack
push eax ; Put return address back on stack
LO: ; common section where parameters are in registers
; ecx = this, edx = item
assume ecx: ptr MyList ; ecx points to structure MyList
mov eax, [ecx].length ; eax = this->length
cmp eax, 100 ; Check if too high
jnb L9 ; List is full. Exit
mov [ecx] .buffer[eax*4],edx ; buffer[length] = item
add eax, 1 ; length++
mov [ecx].length , eax
L9: ret
_MyList AttItem ENDP ; End of MyList::AttItem
assume ecx: nothing ; ecx no longer points to anything

In example 8.3b, the two function entries each load all parameters into registers and then
jumps to a common section that doesn't need to read parameters from the stack. The
_thiscall entry must remove parameters from the stack before the common section.

Another compatibility problem occurs when we want to have a static and a dynamic link
version of the same function library in 32-bit Windows. The static link library uses the
__cdecl convention by default, while the dynamic link library uses the  stdcall
convention by default. The static link library is the most efficient solution for C++ programs,
but the dynamic link library is needed for several other programming languages.

One solution to this problem is to specify the  cdecl orthe stdcall convention for both
libraries. Another solution is to make functions with two entries.

The following example shows the function from example 8.2 with two entries for the
__cdecland stdcall calling conventions. Both conventions have the parameters on the
stack. The difference is that the stack is cleaned up by the caller in the  cdec1 convention
and by the called function inthe  stdcall convention.

; Example 8.4a (Example 8.2 with  stdcall and __ cdecl entries)

; Function with entries for _ stdcall and _ cdecl (32-bit Windows) :
ALIGN 4
; __stdcall entry:
; extern "C" double  stdcall sinxpnx (double x, int n);
_sinxpnx@12 PROC NEAR

; Get all parameters into registers

fild dword ptr [esp+l2] ; n

fld gword ptr [esp+4] ;X

; Remove parameters from stack:

pop eax ; Pop return address

add esp, 12 ; remove 12 bytes of parameters
push eax ; Put return address back on stack
Jmp LO

; __ cdecl entry:
; extern "C" double  cdecl sinxpnx (double x, int n);
__sinxpnx LABEL NEAR
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PUBLIC _sinxpnx

; Get all parameters into registers

fild dword ptr
fld gword ptr

[espt+l2]
[esp+4]

; Don't remove parameters from the stack.

LO: ;
; parameter x = st (0)
; parameter n = st (1)
fmul st(l), st(0)
fsin
fadd
ret
_sinxpnx@l2 ENDP

’

’

n
X
This is done by caller

Common entry with parameters all in registers

n*x

sin (x)

sin(x) + n*x

return value is in st (0)

The method of removing parameters from the stack in the function prolog rather than in the
epilog is admittedly rather kludgy. A more efficient solution is to use conditional assembly:

; Example 8.4Db

; Function with versions for _ stdcall and __ cdecl

(32-bit Windows)

; Choose function prolog according to calling convention:

IFDEF STDCALL
_sinxpnx@12
ELSE
__sinxpnx
ENDIF

PROC NEAR

PROC NEAR

’

’

’

; Function body common to both

fild dword ptr [esp+12]
fld gword ptr [esp+4]
fmul st(l), st (0)
fsin
fadd
; Choose
IFDEF STDCALL_
ret 12
_sinxpnx@12 ENDP
ELSE
ret
_sinxpnx ENDP
ENDIF

’
’
’
’

’

’
’

’

If STDCALL 1is defined
extern "C"  stdcall function name

extern "C" cdecl function name

calling conventions:
n

b4

n*x

sin (x)

sin(x) + n*x

function epilog according to calling convention:

If STDCALL 1is defined
Clean up stack if  stdcall
End of function

Don't clean up stack if  cdecl
End of function

This solution requires that you make two versions of the object file, one with  cdec1 calling
convention for the static link library and one with  stdcal1l calling convention for the
dynamic link library. The distinction is made on the command line for the assembler. The
__stdcall version is assembled with /DSTDCALL on the command line to define the
macro sTDCALL , which is detected by the T1rDEF conditional.

8.3 Supporting multiple calling conventions in 64 bit mode

Calling conventions are better standardized in 64-bit systems than in 32-bit systems. There
is only one calling convention for 64-bit Windows and one calling convention for 64-bit Linux
and other Unix-like systems. Unfortunately, the two sets of calling conventions are quite
different. The most important differences are:

e Function parameters are transferred in different registers in the two systems.

e Registers rsT, RDT, and xmM6 - xMM15 have callee-save status in 64-bit Windows but

not in 64-bit Linux.
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e The caller must reserve a "shadow space" of 32 bytes on the stack for the called
function in 64-bit Windows but not in Linux.

e A'red zone" of 128 bytes below the stack pointer is available for storage in 64-bit
Linux but not in Windows.

e The Microsoft name mangling scheme is used in 64-bit Windows, the Gnu name
mangling scheme is used in 64-bit Linux.

Both systems have the stack aligned by 16 before any call, and both systems have the
stack cleaned up by the caller.

It is possible to make functions that can be used in both systems when the differences
between the two systems are taken into account. The function should save the registers that
have callee-save status in Windows or leave them untouched. The function should not use
the shadow space or the red zone. The function should reserve a shadow space for any
function it calls. The function needs two entries in order to resolve the differences in
registers used for parameter transfer if it has any integer parameters.

Let's use example 4.1 page 31 once more and make an implementation that works in both
64-bit Windows and 64-bit Linux.

; Example 8.5a (Example 4.le/f combined) .
; Support for both 64-bit Windows and 64-bit Linux

; double sinxpnx (double x, int n) {return sin(x) + n * x;}
EXTRN sin:near
ALIGN 8

; 64-bit Linux entry:
_Z7sinxpnxdi PROC NEAR ; Gnu name mangling

; Linux has n in edi, Windows has n in edx. Move it:
mov edx, edi

; 64-bit Windows entry:
?sinxpnx@@YANNH@Z LABEL NEAR ; Microsoft name mangling
PUBLIC ?sinxpnx@@YANNH@Z

; parameter x = xmm0
; parameter n = edx
; return value = xmmO
push rbx ; rbx must be saved
sub rsp, 48 ; space for x, shadow space f. sin, align
movapd [rspt+32], xmm0O ; save x across call to sin
mov ebx, edx ; save n across call to sin
call sin ; xmmO = sin (xmmO0)
cvtsi2sd xmml, ebx ; convert n to double
mulsd xmml, [rsp+32] ; n *ox
addsd xmmQO, xmml ; sin(x) + n * x
add rsp, 48 ; restore stack pointer
pop rbx ; restore rbx
ret ; return value is in xmmO
_Z7sinxpnxdi ENDP ; End of function

We are not using extern "cC" declaration here because we are relying on the different
name mangling schemes for distinguishing between Windows and Linux. The two entries
are used for resolving the differences in parameter transfer. If the function declaration had n
before %, i.e. double sinxpnx (int n, double x);, thenthe Windows version would
have x in xMmM1 and n in ecx, while the Linux version would still have x in xMmM0 and n in EDT.
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The function is storing x on the stack across the call to sin because there are no XMM
registers with callee-save status in 64-bit Linux. The function reserves 32 bytes of shadow
space for the call to sin even though this is not needed in Linux.

8.4 Supporting different object file formats
Another compatibility problem stems from differences in the formats of object files.

Borland, Digital Mars and 16-bit Microsoft compilers use the OMF format for object files.
Microsoft, Intel and Gnu compilers for 32-bit Windows use the COFF format, also called
PE32. Gnu and Intel compilers under 32-bit Linux prefer the ELF32 format. Gnu and Intel
compilers for Mac OS X use the 32- and 64-bit Mach-O format. The 32-bit Codeplay
compiler supports both the OMF, PE32 and ELF32 formats. All compilers for 64-bit
Windows use the COFF/PE32+ format, while compilers for 64-bit Linux use the ELF64
format.

The MASM assembler can produce both OMF, COFF/PE32 and COFF/PE32+ format object
files, but not ELF format. The NASM assembler can produce OMF, COFF/PE32 and ELF32
formats. The YASM assembler can produce OMF, COFF/PE32, ELF32/64, COFF/PE32+
and Mach032/64 formats. The Gnu assembler (Gas) can produce ELF32/64 and
MachO32/64 formats.

It is possible to do cross-platform development if you have an assembler that supports all
the object file formats you need or a suitable object file conversion utility. This is useful for
making function libraries that work on multiple platforms. An object file converter and cross-
platform library manager named objconv is available from www.agner.org/optimize.

The objconv utility can change function names in the object file as well as converting to a
different object file format. This eliminates the need for name mangling. Repeating example
8.5 without name mangling:

; Example 8.5b.
; Support for both 64-bit Windows and 64-bit Unix systems.
; double sinxpnx (double x, int n) {return sin(x) + n * x;}

EXTRN sin:near
ALIGN 8

; 64-bit Linux entry:
Unix sinxpnx PROC NEAR ; Linux, BSD, Mac entry

; Unix has n in edi, Windows has n in edx. Move it:
mov edx, edi

; 64-bit Windows entry:

Win sinxpnx LABEL NEAR ; Microsoft entry
PUBLIC Win sinxpnx
; parameter x = xmm0
; parameter n = edx
; return value = xmmO
push rbx ; rbx must be saved
sub rsp, 48 ; space for x, shadow space f. sin, align
movapd [rsp+32], xmm0O ; save x across call to sin
mov ebx, edx ; save n across call to sin
call sin ; xmmO = sin (xmmO0)
cvtsi2sd xmml, ebx ; convert n to double
mulsd xmml, [rsp+32] ; n *x
addsd xmmO, xmml ; sin(x) + n * x
add rsp, 48 ; restore stack pointer
pop rbx ; restore rbx
ret ; return value is in xmmO
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Unix sinxpnx ENDP ; End of function

This function can now be assembled and converted to multiple file formats with the following
commands:

ml64 /c sinxpnx.asm

objconv -cof64 -np:Win : sinxpnx.obj sinxpnx win.ob]
objconv -elf64 -np:Unix : sinxpnx.obj sinxpnx linux.o
objconv -mac64 -np:Unix : sinxpnx.obj sinxpnx mac.o

The first line assembles the code using the Microsoft 64-bit assembler m164 and produces
a COFF object file.

The second line replaces "win " with nothing in the beginning of function names in the
object file. The result is a COFF object file for 64-bit Windows where the Windows entry for
our function is available as extern "C" double sinxpnx (double x, int n). The name
Unix sinxpnx for the Unix entry is still unchanged in the object file, but is not used.

The third line converts the file to ELF format for 64-bit Linux and BSD, and replaces "unix "
with nothing in the beginning of function names in the object file. This makes the Unix entry
for the function available as sinxpnx, while the unused Windows entry iS Wwin sinxpnx.
The fourth line does the same for the MachO file format, and puts an underscore prefix on
the function name, as required by Mac compilers.

Objconv can also build and convert static library files (* . 1ib, *. a). This makes it possible
to build a multi-platform function library on a single source platform.

An example of using this method is the multi-platform function library asmlib. zip available
from www.agner.org/optimize/. asmlib. zip includes a makefile (see page 51) that makes
multiple versions of the same library by using the object file converter objconv.

More details about object file formats can be found in the book "Linkers and Loaders" by J.
R. Levine (Morgan Kaufmann Publ. 2000).

8.5 Supporting other high level languages

If you are using other high-level languages than C++, and the compiler manual has no
information on how to link with assembly, then see if the manual has any information on
how to link with C or C++ modules. You can probably find out how to link with assembly
from this information.

In general, it is preferred to use simple functions without name mangling, compatible with
the extern "Cc"and cdecl or stdcall conventions in C++. This will work with most
compiled languages. Arrays and strings are usually implemented differently in different
languages.

Many modern programming languages such as C# and Visual Basic.NET cannot link to
static link libraries. You have to make a dynamic link library instead. Delphi Pascal may
have problems linking to object files - it is easier to use a DLL.

Calling assembly code from Java is quite complicated. You have to compile the code to a
DLL or shared object, and use the Java Native Interface (JNI) or Java Native Access (JNA).
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9 Optimizing for speed

9.1 Identify the most critical parts of your code

Optimizing software is not just a question of fiddling with the right assembly instructions.
Many modern applications use much more time on loading modules, resource files,
databases, interface frameworks, etc. than on actually doing the calculations the program is
made for. Optimizing the calculation time does not help when the program spends 99.9% of
its time on something other than calculation. It is important to find out where the biggest
time consumers are before you start to optimize anything. Sometimes the solution can be to
change from C# to C++, to use a different user interface framework, to organize file input
and output differently, to cache network data, to avoid dynamic memory allocation, etc.,
rather than using assembly language. See manual 1: "Optimizing software in C++" for
further discussion.

The use of assembly code for optimizing software is relevant only for highly CPU-intensive
programs such as sound and image processing, encryption, sorting, data compression and
complicated mathematical calculations.

In CPU-intensive software programs, you will often find that more than 99% of the CPU time
is used in the innermost loop. Identifying the most critical part of the software is therefore
necessary if you want to improve the speed of computation. Optimizing less critical parts of
the code will not only be a waste of time, it also makes the code less clear, and less easy to
debug and maintain. Most compiler packages include a profiler that can tell you which part
of the code is most critical. If you don't have a profiler and if it is not obvious which part of
the code is most critical, then set up a number of counter variables that are incremented at
different places in the code to see which part is executed most times. Use the methods
described on page 167 for measuring how long time each part of the code takes.

It is important to study the algorithm used in the critical part of the code to see if it can be

improved. Often you can gain more speed simply by choosing the optimal algorithm than by
any other optimization method.

9.2 Out of order execution
All modern x86 processors can execute instructions out of order. Consider this example:

; Example 9.l1a, Out-of-order execution

mov eax, [meml]
imul eax, 6
mov [mem2], eax
mov ebx, [mem3]
add ebx, 2
mov [mem4], ebx

This piece of code is doing two things that have nothing to do with each other: multiplying
[mem1] by 6 and adding 2 to [mem3]. If it happens that [mem1] is not in the cache then the
CPU has to wait many clock cycles while this operand is being fetched from main memory.
The CPU will look for something else to do in the meantime. It cannot do the second
instruction imul eax, 6 because it depends on the output of the first instruction. But the
fourth instruction mov ebx, [mem3] is independent of the preceding instructions so it is
possible to execute mov ebx, [mem3] and add ebx,2 while itis waiting for [mem1]. The
CPUs have many features to support efficient out-of-order execution. Most important is, of
course, the ability to detect whether an instruction depends on the output of a previous
instruction. Another important feature is register renaming. Assume that the we are using
the same register for multiplying and adding in example 9.1a because there are no more
spare registers:
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; Example 9.1b, Out-of-order execution with register renaming

mov eax, [meml]
imul eax, 6

mov [mem2], eax
mov eax, [mem3]
add eax, 2

mov [memd], eax

Example 9.1b will work exactly as fast as example 9.1a because the CPU is able to use
different physical registers for the same logical register eax. This works in a very elegant
way. The CPU assigns a new physical register to hold the value of eax every time eax is
written to. This means that the above code is changed inside the CPU to a code that uses
four different physical registers for eax. The first register is used for the value loaded from
[mem1]. The second register is used for the output of the imu1l instruction. The third register
is used for the value loaded from [mem3]. And the fourth register is used for the output of
the add instruction. The use of different physical registers for the same logical register
enables the CPU to make the last three instructions in example 9.1b independent of the first
three instructions. The CPU must have a lot of physical registers for this mechanism to work
efficiently. The number of physical registers is different for different microprocessors, but
you can generally assume that the number is sufficient for quite a lot of instruction
reordering.

Partial reqgisters

Some CPUs can keep different parts of a register separate, while other CPUs always treat a
register as a whole. If we change example 9.1b so that the second part uses 16-bit registers
then we have the problem of a false dependence:

; Example 9.1c, False dependence of partial register
mov eax, [meml] ; 32 bit memory operand

imul eax, 6

mov [mem2], eax

mov ax, [mem3] ; 16 bit memory operand

add ax, 2

mov [memd], ax

Here the instruction mov ax, [mem3] changes only the lower 16 bits of register eax, while
the upper 16 bits retain the value they got from the imul instruction. Some CPUs from both
Intel, AMD and VIA are unable to rename a partial register. The consequence is that the mov
ax, [mem3] instruction has to wait for the imul instruction to finish because it needs to
combine the 16 lower bits from [mem3] with the 16 upper bits from the imul instruction.

Other CPUs are able to split the register into parts in order to avoid the false dependence,
but this has another disadvantage in case the two parts have to be joined together again.
Assume, for example, that the code in example 9.1c is followed by pusr Eax. On some
processors, this instruction has to wait for the two parts of Eax to retire in order to join them
together, at the cost of 5-6 clock cycles. Other processors will generate an extra pop for
joining the two parts of the register together.

These problems are avoided by replacing mov ax, [mem3] with movzx eax, [mem3]. This
resets the high bits of eax and breaks the dependence on any previous value of eax. In 64-
bit mode, it is sufficient to write to the 32-bit register because this always resets the upper
part of a 64-bit register. Thus, movzx eax, [mem3] and movzx rax, [mem3] are doing
exactly the same thing. The 32-bit version of the instruction is one byte shorter than the 64-
bit version. Any use of the high 8-bit registers 2H, BH, cH, D1 should be avoided because it
can cause false dependences and less efficient code.

61



The flags register can cause similar problems for instructions that modify some of the flag
bits and leave other bits unchanged. For example, the 1xc and DEC instructions leave the
carry flag unchanged but modifies the zero and sign flags.

Micro-operations

Another important feature is the splitting of instructions into micro-operations (abbreviated
pops or uops). The following example shows the advantage of this:

; Example 9.2, Splitting instructions into uops
push eax
call SomeFunction

The push eax instruction does two things. It subtracts 4 from the stack pointer and stores
eax to the address pointed to by the stack pointer. Assume now that eax is the result of a
long and time-consuming calculation. This delays the push instruction. The cal1 instruction
depends on the value of the stack pointer which is modified by the push instruction. If
instructions were not split into pops then the cai1 instruction would have to wait until the
push instruction was finished. But the CPU splits the push eax instruction into sub esp, 4
followed by mov [esp],eax. The sub esp,4 micro-operation can be executed before eax
is ready, so the ca11 instruction will wait only for sub esp, 4, not for mov [esp], eax.

Execution units

Out-of-order execution becomes even more efficient when the CPU can do more than one
thing at the same time. Many CPUs can do two, three or four things at the same time if the
things to do are independent of each other and do not use the same execution units in the
CPU. Most CPUs have at least two integer ALU's (Arithmetic Logic Units) so that they can
do two or more integer additions per clock cycle. There is usually one floating point add unit
and one floating point multiplication unit so that it is possible to do a floating point addition
and a multiplication at the same time. There may be one memory read unit and one memory
write unit so that it is possible to read and write to memory at the same time. The maximum
average number of pops per clock cycle is three or four on many processors so that it is
possible, for example, to do an integer operation, a floating point operation, and a memory
operation in the same clock cycle. The maximum number of arithmetic operations (i.e.
anything else than memory read or write) is limited to two or three pops per clock cycle,
depending on the CPU.

Pipelined instructions

Floating point operations typically take more than one clock cycle, but they are usually
pipelined so that e.g. a new floating point addition can start before the previous addition is
finished. MMX and XMM instructions use the floating point execution units even for integer
instructions on many CPUs. The details about which instructions can be executed
simultaneously or pipelined and how many clock cycles each instruction takes are CPU
specific. The details for each type of CPU are explained manual 3: "The microarchitecture of
Intel, AMD and VIA CPUs" and manual 4: "Instruction tables".

Summary

The most important things you have to be aware of in order to take maximum advantage of
out-or-order execution are:

e At least the following registers can be renamed: all general purpose registers, the
stack pointer, the flags register, floating point registers, MMX, XMM and YMM
registers. Some CPUs can also rename segment registers and the floating point
control word.

e Prevent false dependences by writing to a full register rather than a partial register.
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e The 1nC and DEc instructions are inefficient on some CPUs because they write to
only part of the flags register (excluding the carry flag). Use ADD or sus instead to
avoid false dependences or inefficient splitting of the flags register.

e A chain of instructions where each instruction depends on the previous one cannot
execute out of order. Avoid long dependency chains. (See page 65).

¢ Memory operands cannot be renamed.

e A memory read can execute before a preceding memory write to a different address.
Any pointer or index registers should be calculated as early as possible so that the
CPU can verify that the addresses of memory operands are different.

e A memory write cannot execute before a preceding write, but the write buffers can
hold a number of pending writes, typically four or more.

e A memory read can execute before or simultaneously with another preceding read
ONn MOost processors.

e The CPU can do more things simultaneously if the code contains a good mixture of
instructions from different categories, such as: simple integer instructions, floating
point addition, multiplication, memory read, memory write.

9.3 Instruction fetch, decoding and retirement

Instruction fetching can be a bottleneck. Many processors cannot fetch more than 16 bytes
of instruction code per clock cycle. It may be necessary to make instructions as short as
possible if this limit turns out to be critical. One way of making instructions shorter is to
replace memory operands by pointers (see chapter 10 page 73). The address of memory
operands can possibly be loaded into pointer registers outside of a loop if instruction
fetching is a bottleneck. Large constants can likewise be loaded into registers.

Instruction fetching is delayed by jumps on most processors. It is important to minimize the
number of jumps in critical code. Branches that are not taken and correctly predicted do not
delay instruction fetching. It is therefore advantageous to organize if-else branches so that
the branch that is followed most commonly is the one where the conditional jump is not
taken.

Most processors fetch instructions in aligned 16-byte or 32-byte blocks. It can be
advantageous to align critical loop entries and subroutine entries by 16 in order to minimize
the number of 16-byte boundaries in the code. Alternatively, make sure that there is no 16-
byte boundary in the first few instructions after a critical loop entry or subroutine entry.

Instruction decoding is often a bottleneck. The organization of instructions that gives the
optimal decoding is processor-specific. Intel PM processors require a 4-1-1 decode pattern.
This means that instructions which generate 2, 3 or 4 pops should be interspersed by two
single-pop instructions. On Core2 processors the optimal decode pattern is 4-1-1-1. On
AMD processors it is preferred to avoid instructions that generate more than 2 pops.

Instructions with multiple prefixes can slow down decoding. The maximum number of
prefixes that an instruction can have without slowing down decoding is 1 on 32-bit Intel
processors, 2 on Intel P4E processors, 3 on AMD processors, and unlimited on Core2.
Avoid address size prefixes. Avoid operand size prefixes on instructions with an immediate
operand. For example, it is preferred to replace Mov ax,2 by Mov Eax, 2.

Decoding is rarely a bottleneck on processors with a trace cache, but there are specific
requirements for optimal use of the trace cache.
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Most Intel processors have a problem called register read stalls. This occurs if the code has
several registers which are often read from but seldom written to.

Instruction retirement can be a bottleneck on most processors. AMD processors and Intel
PM and P4 processors can retire no more than 3 pops per clock cycle. Core2 processors
can retire 4 pops per clock cycle. No more than one taken jump can retire per clock cycle.

All these details are processor-specific. See manual 3: "The microarchitecture of Intel, AMD
and VIA CPUs" for details.

9.4 Instruction latency and throughput

The latency of an instruction is the number of clock cycles it takes from the time the
instruction starts to execute till the result is ready. The time it takes to execute a
dependency chain is the sum of the latencies of all instructions in the chain.

The throughput of an instruction is the maximum number of instructions of the same kind
that can be executed per clock cycle if the instructions are independent. | prefer to list the
reciprocal throughputs because this makes it easier to compare latency and throughput.
The reciprocal throughput is the average time it takes from the time an instruction starts to
execute till another independent instruction of the same type can start to execute, or the
number of clock cycles per instruction in a series of independent instructions of the same
kind. For example, floating point addition on a Core 2 processor has a latency of 3 clock
cycles and a reciprocal throughput of 1 clock per instruction. This means that the processor
uses 3 clock cycles per addition if each addition depends on the result of the preceding
addition, but only 1 clock cycle per addition if the additions are independent.

Manual 4: "Instruction tables" contains detailed lists of latencies and throughputs for almost
all instructions on many different microprocessors from Intel, AMD and VIA.

The following list shows some typical values.

Instruction Typical latency Typical reciprocal
throughput
Integer move 1 0.33-0.5
Integer addition 1 0.33-0.5
Integer Boolean 1 0.33-1
Integer shift 1 0.33-1
Integer multiplication 3-10 1-2
Integer division 20-80 20-40
Floating point addition 3-6 1
Floating point multiplication 4-8 1-2
Floating point division 20-45 20-45
Integer vector addition (XMM) 1-2 0.5-2
Integer vector multiplication (XMM) 3-7 1-2
Floating point vector addition (XMM) 3-5 1-2
Floating point vector multiplication (XMM) 4-7 1-4
Floating point vector division (XMM) 20-60 20-60
Memory read (cached) 3-4 0.5-1
Memory write (cached) 3-4 1
Jump or call 0 1-2

Table 9.1. Typical instruction latencies and throughputs
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9.5 Break dependency chains

In order to take advantage of out-of-order execution, you have to avoid long dependency
chains. Consider the following C++ example, which calculates the sum of 100 numbers:

// Example 9.3a, Loop-carried dependency chain
double 1ist[100], sum = 0.;
for (int i = 0; 1 < 100; i++) sum += list[i];

This code is doing a hundred additions, and each addition depends on the result of the
preceding one. This is a loop-carried dependency chain. A loop-carried dependency chain
can be very long and completely prevent out-of-order execution for a long time. Only the
calculation of i can be done in parallel with the floating point addition.

Assuming that floating point addition has a latency of 4 and a reciprocal throughput of 1, the
optimal implementation will have four accumulators so that we always have four additions in
the pipeline of the floating point adder. In C++ this will look like:

// Example 9.3b, Multiple accumulators

double 1ist[100], suml = 0., sum2 = 0., sum3 = 0., sum4 = 0.;

for (int i = 0; 1 < 100; i += 4) {
suml += list[i];
sum?2 += list[i+1];
sum3 += list[i4+2];
sum4 += list[i+3];

}

suml = (suml + sum2) + (sum3 + sumié);

Here we have four dependency chains running in parallel and each dependency chain is
one fourths as long as the original one. The optimal number of accumulators is the latency
of the instruction (in this case floating point addition), divided by the reciprocal throughput.
See page 65 for examples of assembly code for loops with multiple accumulators.

It may not be possible to obtain the theoretical maximum throughput. The more parallel
dependency chains there are, the more difficult is it for the CPU to schedule and reorder the
pops optimally. It is particularly difficult if the dependency chains are branched or entangled.

Some microprocessors can execute four or five instructions per clock cycle, and even more
with macro-op fusion. The more instruction-level parallelism the microprocessor supports,
the more important it is to avoid long dependency chains.

Dependency chains occur not only in loops but also in linear code. Such dependency chains
can also be broken up. For example, v = a + b + ¢ + d can be changed to
y = (a + b) + (c + d) so that the two parentheses can be calculated in parallel.

Sometimes there are different possible ways of implementing the same calculation with
different latencies. For example, you may have the choice between a branch and a
conditional move. The branch has the shortest latency, but the conditional move avoids the
risk of branch misprediction (see page 67). Which implementation is optimal depends on
how predictable the branch is and how long the dependency chain is.

A common way of setting a register to zero iSs XOR EAX,EAX OF SUB EAX,EAX. Some
processors recognize that these instructions are independent of the prior value of the
register. So any instruction that uses the new value of the register will not have to wait for
the value prior to the xor or suB instruction to be ready. These instructions are useful for
breaking an unnecessary dependence. The following list summarizes which instructions are
recognized as breaking dependence when source and destination are the same, on
different processors:
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Instruction P3 and P4 PM Core2 AMD
earlier
XOR - X - X X
SUB - X - X X
SBB - - R . X
CMP - - - - R
PXOR - X - X X
XORPS, XORPD - - - X X
PANDN - - N - R
PSUBxx - - - X -
PCMPxx - - - X -

Table 9.2. Instructions that break dependence when source and destination are the same

You should not break a dependence by an 8-bit or 16-bit part of a register. For example
XOR AX,Ax breaks a dependence on some processors, but not all. But xorR EAX, EAX IS
sufficient for breaking the dependence on rax in 64-bit mode.

The sBB EAx,EAX is of course dependent on the carry flag, even when it does not depend
oNn EAX.

You may also use these instructions for breaking dependences on the flags. For example,
rotate instructions have a false dependence on the flags in Intel processors. This can be
removed in the following way:

; Example 9.4, Break dependence on flags

ror eax, 1

sub edx, edx ; Remove false dependence on the flags
ror ebx, 1

You cannot use cLc for breaking dependences on the carry flag.

9.6 Jumps and calls

Jumps, branches, calls and returns do not necessarily add to the execution time of a code
because they will typically be executed in parallel with something else. The number of
jumps etc. should nevertheless be kept at a minimum in critical code for the following
reasons:

e The fetching of code after an unconditional jump or a taken conditional jump is
delayed by typically 1-3 clock cycles, depending on the microprocessor. The delay is
worst if the target is near the end of a 16-bytes or 32-bytes code fetch block (i.e.
before an address divisible by 16).

e The code cache becomes fragmented and less efficient when jumping around
between noncontiguous subroutines.

e Microprocessors with a pop cache or trace cache are likely to store multiple
instances of the same code in this cache when the code contains many jumps.

e The branch target buffer (BTB) can store only a limited number of jump target
addresses. A BTB miss costs many clock cycles.

e Conditional jumps are predicted according to advanced branch prediction
mechanisms. Mispredictions are expensive, as explained below.
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e On most processors, branches can interfere with each other in the global branch
pattern history table and the branch history register. One branch may therefore
reduce the prediction rate of other branches.

e Returns are predicted by the use of a return stack buffer, which can only hold a
limited number of return addresses, typically 8 or more.

¢ Indirect jumps and indirect calls are poorly predicted on older processors.

All modern CPUs have an execution pipeline that contains stages for instruction prefetching,
decoding, register renaming, pop reordering and scheduling, execution, retirement, etc. The
number of stages in the pipeline range from 12 to 22, depending on the specific micro-
architecture. When a branch instruction is fed into the pipeline then the CPU doesn't know
for sure which instruction is the next one to fetch into the pipeline. It takes 12-22 more clock
cycles before the branch instruction is executed so that it is known with certainty which way
the branch goes. This uncertainty is likely to break the flow through the pipeline. Rather than
waiting 12 or more clock cycles for an answer, the CPU attempts to guess which way the
branch will go. The guess is based on the previous behavior of the branch. If the branch has
gone the same way the last several times then it is predicted that it will go the same way
this time. If the branch has alternated regularly between the two ways then it is predicted
that it will continue to alternate.

If the prediction is right then the CPU has saved a lot of time by loading the right branch into
the pipeline and started to decode and speculatively execute the instructions in the branch.
If the prediction was wrong then the mistake is discovered after several clock cycles and the
mistake has to be fixed by flushing the pipeline and discarding the results of the speculative
executions. The cost of a branch misprediction ranges from 12 to more than 50 clock
cycles, depending on the length of the pipeline and other details of the microarchitecture.
This cost is so high that very advanced algorithms have been implemented in order to refine
the branch prediction. These algorithms are explained in detail in manual 3: "The
microarchitecture of Intel, AMD and VIA CPUs".

In general, you can assume that branches are predicted correctly most of the time in these
cases:

¢ If the branch always goes the same way.

e If the branch follows a simple repetitive pattern and is inside a loop with few or no
other branches.

¢ If the branch is correlated with a preceding branch.

e |f the branch is a loop with a constant, small repeat count and there are few or no
conditional jumps inside the loop.

The worst case is a branch that goes either way approximately 50% of the time, does not
follow any regular pattern, and is not correlated with any preceding branch. Such a branch
will be mispredicted 50% of the time. This is so costly that the branch should be replaced by
conditional moves or a table lookup if possible.

In general, you should try to keep the number of poorly predicted branches at a minimum
and keep the number of branches inside a loop at a minimum. It may be useful to split up or
unroll a loop if this can reduce the number of branches inside the loop.

Indirect jumps and indirect calls are often poorly predicted. Older processors will simply
predict an indirect jump or call to go the same way as it did last time. Many newer
processors are able to recognize simple repetitive patterns for indirect jumps.
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Returns are predicted by means of a so-called return stack buffer which is a first-in-last-out
buffer that mirrors the return addresses pushed on the stack. A return stack buffer with 16
entries can correctly predict all returns for subroutines at a nesting level up to 16. If the
subroutine nesting level is deeper than the size of the return stack buffer then the failure will
be seen at the outer nesting levels, not the presumably more critical inner nesting levels. A
return stack buffer size of 8 or more is therefore sufficient in most cases, except for deeply
nested recursive functions.

The return stack buffer will fail if there is a call without a matching return or a return without
a preceding call. It is therefore important to always match calls and returns. Do not jump out
of a subroutine by any other means than by a reT instruction. And do not use the rReT
instruction as an indirect jump. Far calls should be matched with far returns.

Make conditional jumps most often not taken

The efficiency and throughput for not-taken branches is better than for taken branches on
most processors. Therefore, it is good to place the most frequent branch first:

; Example 9.5, Place most frequent branch first
Funcl PROC NEAR

cmp eax, 567

Je L1

; frequent branch

ret
Ll: ; rare branch

ret

Eliminating calls
It is possible to replace a call followed by a return by a jump:

; Example 9.6a, call/ret sequence (32-bit)
Funcl PROC NEAR

call Func?2
ret
Funcl ENDP

This can be changed to:

; Example 9.6b, call+ret replaced by jmp
Funcl PROC NEAR

Jmp Func?2
Funcl ENDP

This modification does not conflict with the return stack buffer mechanism because the call
to Func1 is matched with the return from Func2. In systems with stack alignment, it is
necessary to restore the stack pointer before the jump:

; Example 9.7a, call/ret sequence (64-bit Windows or Linux)
Funcl PROC NEAR

sub rsp, 8 ; Align stack by 16

call Func2 ; This call can be eliminated
add rsp, 8

ret

Funcl ENDP

This can be changed to:
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; Example 9.7b, call+ret replaced by jmp with stack aligned
Funcl PROC NEAR
sub rsp, 8

add rsp, 8 ; Restore stack pointer before jump
jmp Func?2
Funcl ENDP

Eliminating unconditional jumps

It is often possible to eliminate a jump by copying the code that it jumps to. The code that is
copied can typically be a loop epilog or function epilog. The following example is a function
with an if-else branch inside a loop:

; Example 9.8a, Function with jump that can be eliminated

FuncA PROC NEAR
push ebp
mov ebp, esp
sub esp, StackSpaceNeeded
lea edx, EndOfSomeArray
XOr eax, eax
Loopl: ; Loop starts here
cmp [edx+teax*4], eax ; if-else
Jje ElseBranch
Ce ; First branch
Jmp End If
ElseBranch:
; Second branch
End If:
add eax, 1 ; Loop epilog
Jnz Loopl
mov esp, ebp ; Function epilog
pop ebp
ret

FuncA ENDP
The jump to End_1£ may be eliminated by duplicating the loop epilog:

; Example 9.8b, Loop epilog copied to eliminate jump

FuncA PROC NEAR
push ebp
mov ebp, esp
sub esp, StackSpaceNeeded
lea edx, EndOfSomeArray
XOor eax, eax
Loopl: ; Loop starts here
cmp [edxteax*4], eax ; if-else
Jje ElseBranch
.. ; First branch
add eax, 1 ; Loop epilog for first branch
Jnz Loopl
Jmp AfterLoop
ElseBranch:
R ; Second branch
add eax, 1 ; Loop epilog for second branch
Jnz Loopl
AfterLoop:
mov esp, ebp ; Function epilog
pop ebp
ret

FuncA ENDP
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In example 9.8b, the unconditional jump inside the loop has been eliminated by making two

copies of the loop epilog. The branch that is executed most often should come first because
the first branch is fastest. The unconditional jump to AfterLoop can also be eliminated. This
is done by copying the function epilog:

; Example 9.8b, Function epilog copied to eliminate jump

FuncA PROC NEAR
push ebp
mov ebp, esp
sub esp, StackSpaceNeeded
lea edx, EndOfSomeArray
XOor eax, eax
Loopl: ; Loop starts here
cmp [edxteax*4], eax ; if-else
je ElseBranch
ce ; First branch
add eax, 1 ; Loop epilog for first branch
Jnz Loopl
mov esp, ebp ; Function epilog 1
pop ebp
ret
ElseBranch:
ce ; Second branch
add eax, 1 ; Loop epilog for second branch
Jnz Loopl
mov esp, ebp ; Function epilog 2
pop ebp
ret

FuncA ENDP

The gain that is obtained by eliminating the jump to AfterLoop is less than the gain
obtained by eliminating the jump to End_1f because it is outside the loop. But | have shown
it here to illustrate the general method of duplicating a function epilog.

Replacing conditional jumps with conditional moves

The most important jumps to eliminate are conditional jumps, especially if they are poorly
predicted. Example:

// Example 9.9a. C++ branch to optimize
a=b>c?>d: e;

This can be implemented with either a conditional jump or a conditional move:

; Example 9.9b. Branch implemented with conditional jump

mov eax, [b]
cmp eax, [c]
Jng Ll
mov eax, [d]
Jmp L2
Ll: mov eax, [e]
L2: mov [a], eax

; Example 9.9c. Branch implemented with conditional move

mov eax, [b]
cmp eax, [c]
mov eax, [d]
cmovng eax, [e]
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mov [a], eax

The advantage of a conditional move is that it avoids branch mispredictions. But it has the
disadvantage that it increases the length of a dependency chain, while a predicted branch
breaks the dependency chain. If the code in example 9.9c is part of a dependency chain
then the cmov instruction adds to the length of the chain. The latency of cmov is two clock
cycles on Intel processors, and one clock cycle on AMD processors. If the same code is
implemented with a conditional jump as in example 9.9b and if the branch is predicted
correctly, then the result doesn't have to wait for b and c to be ready. It only has to wait for
either d or e, whichever is chosen. This means that the dependency chain is broken by the
predicted branch, while the implementation with a conditional move has to wait for both b, c,
d and e to be available. If d and e are complicated expressions, then both have to be
calculated when the conditional move is used, while only one of them has to be calculated if
a conditional jump is used.

As a rule of thumb, we can say that a conditional jump is faster than a conditional move if
the code is part of a dependency chain and the prediction rate is better than 75%. A
conditional jump is also preferred if we can avoid a lengthy calculation of d or e when the
other operand is chosen.

Loop-carried dependency chains are particularly sensitive to the disadvantages of
conditional moves. For example, the code in example 12.16a on page 115 works more
efficiently with a branch inside the loop than with a conditional move, even if the branch is
poorly predicted. This is because the floating point conditional move adds to the loop-
carried dependency chain and because the implementation with a conditional move has to
calculate all the power*xp values, even when they are not used.

Another example of a loop-carried dependency chain is a binary search in a sorted list. If
the items to search for are randomly distributed over the entire list then the branch
prediction rate will be close to 50% and it will be faster to use conditional moves. But if the
items are often close to each other so that the prediction rate will be better, then it is more
efficient to use conditional jumps than conditional moves because the dependency chain is
broken every time a correct branch prediction is made.

It is also possible to do conditional moves in vector registers on an element-by-element
basis. See page 123ff for details. There are special vector instructions for getting the
minimum or maximum of two numbers. It may be faster to use vector registers than integer
or floating point registers for finding minimums or maximums.

Replacing conditional jumps with conditional set instructions

If a conditional jump is used for setting a Boolean variable to 0 or 1 then it is often more
efficient to use the conditional set instruction. Example:

// Example 9.10a. Set a bool variable on some condition
int b, c;
bool a = b > ¢c;

; Example 9.10b. Implementation with conditional set

mov eax, [b]
cmp eax, [c]
setg al

mov [a], al

The conditional set instruction writes only to 8-bit registers. If a 32-bit result is needed then
set the rest of the register to zero before the compare:

; Example 9.10c. Implementation with conditional set, 32 bits
mov eax, [Db]
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XOr ebx, ebx ; zero register before cmp to avoid changing flags

cmp eax, [c]
setg bl
mov [a], ebx

If there is no vacant register then use movzx:

; Example 9.10d. Implementation with conditional set, 32 bits

mov eax, [b]
cmp eax, [c]
setqg al

movzx eax, al

mov [a], eax

If a value of all ones is needed for true then use neg eax.

An implementation with conditional jumps may be faster than conditional set if the prediction
rate is good and the code is part of a long dependency chain, as explained in the previous
section (page 70).

Replacing conditional jumps with bit-manipulation instructions

It is sometimes possible to obtain the same effect as a branch by ingenious manipulation of
bits and flags. The carry flag is particularly useful for bit manipulation tricks:

; Example 9.11, Set carry flag if eax is zero:
cmp eax, 1

; Example 9.12, Set carry flag if eax is not zero:
neg eax

; Example 9.13, Increment eax if carry flag is set:
adc eax, 0

; Example 9.14, Copy carry flag to all bits of eax:
sbb eax, eax

; Example 9.15, Copy bits one by one from carry into a bit vector:
rcl eax, 1

It is possible to calculate the absolute value of a signed integer without branching:

; Example 9.16, Calculate absolute value of eax

cdg ; Copy sign bit of eax to all bits of edx
xor eax, edx ; Invert all bits if negative
sub eax, edx ; Add 1 if negative

The following example finds the minimum of two unsigned numbers: if (b > a) b = a;

; Example 9.17a, Find minimum of eax and ebx (unsigned):

sub eax, ebx ; = a-b

sbb edx, edx ; = (b > a) ? OxXFFFFFFFE : O
and edx, eax ; = (b>a) 2 a-b : 0

add ebx, edx ; Result is in ebx

Or, for signed numbers, ignoring overflow:

; Example 9.17b, Find minimum of eax and ebx (signed) :

sub eax, ebx ; Will not work 1if overflow here
cdqg ; = (b > a) ? OxXFFFFEFFFEF : O
and edx, eax ; = (b>a) 2 a-b : 0

add ebx, edx ; Result is in ebx
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The next example chooses between two numbers: if (a<0) d = b; else d = c;

; Example 9.18a, Choose between two numbers
test eax, eax

mov edx, ecx

cmovs edx, ebx ; = (a<0) 2 b :c

Conditional moves are not very efficient on Intel processors and not available on old
processors. Alternative implementations may be faster in some cases. The following
example gives the same result as example 9.18a.

; Example 9.18b, Choose between two numbers without conditional move:
cdqg (a < 0) ? OXFFFFFFFF : O

xor ebx, ecx ; b 2 ¢ = bits that differ between b and c
and edx, ebx ; = (a<0) 2 (b”c) =0
xor edx, ecx ; = (a<0) 2 b:c

Example 9.18b may be faster than 9.18a on processors where conditional moves are
inefficient. Example 9.18b destroys the value of ebx.

Whether these tricks are faster than a conditional jump depends on the prediction rate, as
explained above.

10 Optimizing for size

The code cache can hold from 8 to 32 kb of code, as explained in chapter 11 page 82. If
there are problems keeping the critical parts of the code within the code cache, then you
may consider reducing the size of the code. Reducing the code size can also improve the
decoding of instructions. Loops that have no more than 64 bytes of code perform
particularly fast on the Core2 processor.

You may even want to reduce the size of the code at the cost of reduced speed if speed is
not important.

32-bit code is usually bigger than 16-bit code because addresses and data constants take 4
bytes in 32-bit code and only 2 bytes in 16-bit code. However, 16-bit code has other
penalties, especially because of segment prefixes. 64-bit code does not need more bytes
for addresses than 32-bit code because it can use 32-bit RIP-relative addresses. 64-bit
code may be slightly bigger than 32-bit code because of REX prefixes and other minor
differences, but it may as well be smaller than 32-bit code because the increased number of
registers reduces the need for memory variables.

10.1 Choosing shorter instructions

Certain instructions have short forms. puss and poP instructions with an integer register take
only one byte. xcHG EAX, reg32 is also a single-byte instruction and thus takes less space
than a Mov instruction, but xcHG is slower than mov. 1nC and pec with a 32-bit register in 32-
bit mode, or a 16-bit register in 16-bit mode take only one byte. The short form of tnc and
DEC IS not available in 64-bit mode.

The following instructions take one byte less when they use the accumulator than when they
use any other register: App, ADC, SUB, SBB, AND, OR, XOR, CMP, TEST With an immediate
operand without sign extension. This also applies to the Mov instruction with a memory
operand and no pointer register in 16 and 32 bit mode, but not in 64 bit mode. Examples:
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; Example 10.1. Instruction sizes
add eax,1000 issmallerthan add ebx,1000
mov eax, [mem] IS smallerthan mov ebx, [mem], exceptin 64 bit mode.

Instructions with pointers take one byte less when they have only a base pointer (except
ESP, RSP Or R12) and a displacement than when they have a scaled index register, or both
base pointer and index register, or Esp, Rsp or R12 as base pointer. Examples:

; Example 10.2. Instruction sizes
mov eax,arrayl[ebx] is smaller than mov eax,arrayl[ebx*4]
mov eax, [ebp+12] is smallerthan mov eax, [esp+12]

Instructions with Bp, EBP, RBP Or R13 as base pointer and no displacement and no index
take one byte more than with other registers:

; Example 10.3. Instruction sizes
mov eax, [ebx] is smaller than  mov eax, [ebp], but
mov eax, [ebx+4] iS same size as mov eax, [ebp+4].

Instructions with a scaled index pointer and no base pointer must have a four bytes
displacement, even when it is O:

; Example 10.4. Instruction sizes
lea eax, [ebx+ebx] IS shorterthan 1lea eax, [ebx*2].

Instructions in 64-bit mode need a REX prefix if at least one of the registers r8 - R15 or xMM8
- xMM15 are used. Instructions that use these registers are therefore one byte longer than
instructions that use other registers, unless a REX prefix is needed anyway for other
reasons:

; Example 10.5a. Instruction sizes (64 bit mode)
mov eax, [rbx] is smallerthan  mov eax, [r8].

; Example 10.5b. Instruction sizes (64 bit mode)
mov rax, [rbx] iS same size as mov rax, [r8].

In example 10.5a, we can avoid a REX prefix by using register rex instead of rg as pointer.
But in example 10.5b, we need a REX prefix anyway for the 64-bit operand size, and the
instruction cannot have more than one REX prefix.

Floating point calculations can be done either with the old x87 style instructions with floating
point stack registers sT (0)-sT (7) or the new SSE style instructions with XMM registers.
The x87 style instructions are more compact than the latter, for example:

; Example 10.6. Floating point instruction sizes
fadd st(0), st(l) ; 2 bytes
addsd xmmO, xmml ; 4 bytes

The use of x87 style code may be advantageous even if it requires extra FxcH instructions.
There is no big difference in execution speed between the two types of floating point
instructions on current processors. However, it is possible that the x87 style instructions will
be considered obsolete and will be less efficient on future processors.

Processors supporting the AVX instruction set can code XMM instructions in two different
ways, with a VEX prefix or with the old prefixes. Sometimes the VEX version is shorter and
sometimes the old version is shorter. However, there is a severe performance penalty to
mixing XMM instructions without VEX prefix with instructions using YMM registers on some
processors.
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The AVX-512 instruction set uses a new 4-bytes prefix called EVEX. While the EVEX prefix
is one or two bytes longer then the VEX prefix, it allows a more efficient coding of memory
operands with pointer and offset. Memory operands with a 4-bytes offset can sometimes be
replaced by a 1-byte scaled offset when the EVEX prefix is used. Thereby the total
instruction length becomes smaller.

10.2 Using shorter constants and addresses
Many jump addresses, data addresses, and data constants can be expressed as sign-

extended 8-bit constants. This saves a lot of space. A sign-extended byte can only be used
if the value is within the interval from -128 to +127.

For jump addresses, this means that short jumps take two bytes of code, whereas jumps
beyond 127 bytes take 5 bytes if unconditional and 6 bytes if conditional.

Likewise, data addresses take less space if they can be expressed as a pointer and a
displacement between -128 and +127. The following example assumes that [mem1] and
[mem2] are static memory addresses in the data segment and that the distance between
them is less than 128 bytes:

; Example 10.7a, Static memory operands

mov ebx, [meml] ; 6 bytes
add ebx, [mem2] ; 6 bytes
Reduce to:

; Example 10.7b, Replace addresses by pointer

mov eax, offset meml ; 5 bytes
mov ebx, [eax] ; 2 bytes
add ebx, [eax] + (mem2 - meml) ; 3 bytes

In 64-bit mode you need to replace mov eax,offset meml With lea rax, [meml], which
is one byte longer. The advantage of using a pointer obviously increases if you can use the
same pointer many times. Storing data on the stack and using EBp or Esp as pointer will
thus make the code smaller than if you use static memory locations and absolute
addresses, provided of course that the data are within +/-127 bytes of the pointer. Using
pPUSH and poP to write and read temporary integer data is even shorter.

Data constants may also take less space if they are between -128 and +127. Most
instructions with immediate operands have a short form where the operand is a sign-
extended single byte. Examples:

; Example 10.8, Sign-extended operands

push 200 ; 5 bytes
push 100 ; 2 bytes, sign extended
add ebx, 128 ; 6 bytes
sub ebx, -128 ; 3 bytes, sign extended

The only instructions with an immediate operand that do not have a short form with a sign-
extended 8-bit constant are vov, TEST, CALL and RET. A TEST instruction with a 32-bit
immediate operand can be replaced with various shorter alternatives, depending on the
logic in case. Some examples:

; Example 10.9, Alternatives to test with 32-bit constant

test eax, 8 ; 5 bytes
test ebx, 8 ; 6 bytes
test al, 8 ; 2 bytes
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test bl, 8 ; 3 bytes
and ebx, 8 ; 3 bytes
bt ebx, 3 ; 4 bytes (uses carry flagqg)
cmp ebx, 8 ; 3 bytes

It is not recommended to use the versions with 16-bit constants in 32-bit or 64-bit modes,
such as TEST aXx,800H because it will cause a penalty for decoding a length-changing
prefix on some processors, as explained in manual 3: "The microarchitecture of Intel, AMD
and VIA CPUs".

Shorter alternatives for MOV register,constant are often useful. Examples:

; Example 10.10, Loading constants into 32-bit registers

mov eax, O ; 5 bytes
sub eax, eax ; 2 bytes
mov eax, 1 ; 5 bytes
sub eax, eax / inc eax ; 3 bytes
push 1 / pop eax ; 3 bytes
mov eax, -1 ; 5 bytes
or eax, -1 ; 3 bytes

You may also consider reducing the size of static data. Obviously, an array can be made
smaller by using a smaller data size for the elements. For example 16-bit integers instead of
32-bit integers if the data are sure to fit into the smaller data size. The code for accessing
16-bit integers is slightly bigger than for accessing 32-bit integers, but the increase in code
size is small compared to the decrease in data size for a large array. Instructions with 16-bit
immediate data operands should be avoided in 32-bit and 64-bit mode because of the
problem with decoding length-changing prefixes.

10.3 Reusing constants

If the same address or constant is used more than once then you may load it into a register.
A mov with a 4-byte immediate operand may sometimes be replaced by an arithmetic
instruction if the value of the register before the vov is known. Example:

; Example 10.1la, Loading 32-bit constants

mov [meml], 200 ; 10 bytes

mov [mem2], 201 ; 10 bytes

mov eax, 100 ;5 bytes

mov ebx, 150 ;5 bytes
Replace with:

; Example 10.11b, Reuse constants

mov eax, 200 ;5 bytes
mov [meml], eax ; 5 bytes
inc eax ;1 byte
mov [mem2], eax ;5 bytes
sub eax, 101 ;3 bytes
lea ebx, [eax+50] ; 3 bytes

10.4 Constants in 64-bit mode

In 64-bit mode, there are three ways to move a constant into a 64-bit register: with a 64-bit
constant, with a 32-bit sign-extended constant, and with a 32-bit zero-extended constant:

; Example 10.12, Loading constants into 64-bit registers
mov rax, 123456789%abcdefOh ; 10 bytes (64-bit constant)
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mov rax, -100 ;7 bytes (32-bit sign-extended)
mov eax, 100 ;5 bytes (32-bit zero-extended)

Some assemblers use the sign-extended version rather than the shorter zero-extended
version, even when the constant is within the range that fits into a zero-extended constant.
You can force the assembler to use the zero-extended version by specifying a 32-bit
destination register. Writes to a 32-bit register are always zero-extended into the 64-bit
register.

10.5 Addresses and pointers in 64-bit mode

64-bit code should preferably use 64-bit register size for base and index in addresses, and
32-bit register size for everything else. Example:

; Example 10.13, 64-bit versus 32-bit registers
mov eax, [rbx + 4*rcx]
inc rcx

Here, you can save one byte by changing inc rcx to inc ecx. This will work because the
value of the index register is certain to be less than 2%2. The base pointer however, may be
bigger than 232 in some systems so you can't replace add rbx,4 by add ebx, 4. Never
use 32-bit registers as base or index inside the square brackets in 64-bit mode.

The rule of using 64-bit registers inside the square brackets of an indirect address and 32-
bit registers everywhere else also applies to the 12 instruction. Examples:

; Example 10.14. LEA in 64-bit mode

lea eax, [ebx + ecx] ; 4 bytes (needs address size prefix)
lea eax, [rbx + rcx] ; 3 bytes (no prefix)

lea rax, [ebx + ecx] ; 5 bytes (address size and REX prefix)
lea rax, [rbx + rcx] ; 4 bytes (needs REX prefix)

The form with 32-bit destination and 64-bit address is preferred unless a 64-bit result is
needed. This version takes no more time to execute than the version with 64-bit destination.
The forms with address size prefix should never be used.

An array of 64-bit pointers in a 64-bit program can be made smaller by using 32-bit pointers
relative to the image base or to some reference point. This makes the array of pointers
smaller at the cost of making the code that uses the pointers bigger since it needs to add
the image base. Whether this gives a net advantage depends on the size of the array.
Example:

; Example 10.15a. Jump-table in 64-bit mode
.data
JumpTable DQ Labell, Label2, Label3,

.code

mov eax, [n] ; Index

lea rdx, JumpTable ; Address of jump table
jmp gword ptr [rdx+trax*8] ; Jump to JumpTable[n]

Implementation with image-relative pointers is available in Windows only:

; Example 10.15b. Image-relative jump-table in 64-bit Windows

.data

JumpTable DD imagerel (Labell),imagerel (Label?2), imagerel (Label3), ..
extrn  ImageBase:byte

.code

mov eax, [n] ; Index
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lea rdx, __ ImageBase ; Image base

mov eax, [rdxtrax*4+imagerel (JumpTable)] ; Load image rel. address
add rax, rdx ; Add image base to address
Jjmp rax ; Jump to computed address

The Gnu compiler for Mac OS X uses the jump table itself as a reference point:

; Example 10.15c. Self-relative jump-table in 64-bit Mac

.data
JumpTable DD Labell-JumpTable, Label2-JumpTable, Label3-JumpTable

.code

mov eax, [n] ; Index

lea rdx, JumpTable ; Table and reference point
movsxd rax, [rdx + rax*4] ; Load address relative to table
add rax, rdx ; Add table base to address

Jjmp rax ; Jump to computed address

The assembler may not be able to make self-relative references form the data segment to
the code segment.

The shortest alternative is to use 32-bit absolute pointers. This method can be used only if
there is certainty that all addresses are less than 23

; Example 10.15d. 32-bit absolute jump table in 64-bit Linux
; Requires that addresses < 2731

.data

JumpTable DD Labell, Label2, Label3, .. ; 32-bit addresses
.code

mov eax, [n] ; Index

mov eax, JumpTable[rax*4] ; Load 32-bit address

Jjmp rax ; Jump to zero-extended address

In example 10.15d, the address of JumpTable is a 32-bit relocatable address which is sign-
extended to 64 bits. This works if the address is less than 2%. The addresses of Label1,
etc., are zero-extended, so this will work if the addresses are less than 2%2. The method of
example 10.15d can be used if there is certainty that the image base plus the program size
is less than 23, This will work in application programs in Linux and BSD and in some cases
in Windows, but not in Mac OS X (see page 23).

It is even possible to replace the 64-bit or 32-bit pointers with 16-bit offsets relative to a
suitable reference point:

; Example 10.15d. 16-bit offsets to a reference point
.data
JumpTable DW 0, Label2-Labell, Label3-Labell,

.code

mov eax, [n] ; Index

lea rdx, JumpTable ; Address of table (RIP-relative)
movsx rax, word ptr [rdx+rax*2] ; Sign-extend 16-bit offset
lea rdx, Labell ; Use Labell as reference point
add rax, rdx ; Add offset to reference point
Jjmp rax ; Jump to computed address

Example 10.15d uses rabel1 as a reference point. It works only if all labels are within the
interval Labe11 * 2%, The table contains the 16-bit offsets which are sign-extended and
added to the reference point.
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The examples above show different methods for storing code pointers. The same methods
can be used for data pointers. A pointer can be stored as a 64-bit absolute address, a 32-bit
relative address, a 32-bit absolute address, or a 16-bit offset relative to a suitable reference
point. The methods that use pointers relative to the image base or a reference point are only
worth the extra code if there are many pointers. This is typically the case in large switch
statements and in linked lists.

10.6 Making instructions longer for the sake of alignment

There are situations where it can be advantageous to reverse the advice of the previous
paragraphs in order to make instructions longer. Most important is the case where a loop
entry needs to be aligned (see p. 86). Rather than inserting nop's to align the loop entry
label you may make the preceding instructions longer than their minimum lengths in such a
way that the loop entry becomes properly aligned. The longer versions of the instructions do
not take longer time to execute, so we can save the time it takes to execute the nop's.

The assembler will normally choose the shortest possible form of an instruction. It is often
possible to choose a longer form of the same or an equivalent instruction. This can be done
in several ways.

Use general form instead of short form of an instruction

The short forms of 1nc, DEC, PUSH, POP, XCHG, ADD, MOV do not have a mod-reg-r/m byte (see
p. 25). The same instructions can be coded in the general form with a mod-reg-r/m byte.
Examples:

; Example 10.16. Making instructions longer

inc eax ; short form. 1 byte (in 32-bit mode only)
DB OFFH, O0COH ; long form of INC EAX, 2 bytes

push ebx ; short form. 1 byte

DB OFFH, OF3H ; long form of PUSH EBX, 2 bytes

Use an equivalent instruction that is longer
Examples:

; Example 10.17. Making instructions longer

inc eax ; 1 byte (in 32-bit mode only)

add eax, 1 ; 3 bytes replacement for INC EAX

mov eax, ebx ; 2 bytes

lea eax, [ebx] ; can be any length from 2 to 8 bytes, see below

Use 4-bytes immediate operand

Instructions with a sign-extended 8-bit immediate operand can be replaced by the version
with a 32-bit immediate operand:

; Example 10.18. Making instructions longer

add ebx,1 ; 3 bytes. Uses sign-extended 8-bit operand
add ebx,9999 ; Use dummy constant too big for 8-bit operand
ORG $ - 14 ; Go back 4 bytes (MASM syntax)

DD 1 ; and overwrite the 9999 operand with a 1.

The above will encode app EBX, 1 using 6 bytes of code.
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Add zero displacement to pointer

An instruction with a pointer can have a displacement of 1 or 4 bytes in 32-bit or 64-bit
mode (1 or 2 bytes in 16-bit mode). A dummy displacement of zero can be used for making
the instruction longer:

; Example 10.19. Making instructions longer

mov eax, [ebx] ; 2 bytes

mov eax, [ebx+1] ; Add l-byte displacement. Total length = 3
ORG $ -1 ; Go back one byte (MASM syntax)

DB 0 ; and overwrite displacement with 0

mov eax, [ebx+9999]; Add 4-byte displacement. Total length = 6
ORG §$ - 4 ; Go back 4 bytes (MASM syntax)
DD 0 ; and overwrite displacement with 0

The same can be done with LEA EAX, [EBX+0] as a replacement for MOV EAX, EBX.

Use SIB byte

An instruction with a memory operand can have a SIB byte (see p. 25). A SIB byte can be
added to an instruction that doesn't already have one to make the instruction one byte
longer. A SIB byte cannot be used in 16-bit mode or in 64-bit mode with a RIP-relative
address. Example:

; Example 10.20. Making instructions longer

mov eax, [ebx] ; Length = 2 bytes
DB 8BH, 04H, 23H ; Same with SIB byte. Length = 3 bytes
DB 8BH, 44H, 23H, 00H ; With SIB byte and displacement. 4 bytes

Use prefixes

An easy way to make an instruction longer is to add unnecessary prefixes. All instructions
with a memory operand can have a segment prefix. The DS segment prefix is rarely
needed, but it can be added without changing the meaning of the instruction:

; Example 10.21. Making instructions longer
DB 3EH ; DS segment prefix
mov eax, [ebx] ; prefix + instruction = 3 bytes

All instructions with a memory operand can have a segment prefix, including LEA. Itis
actually possible to add a segment prefix even to instructions without a memory operand.
Such meaningless prefixes are simply ignored. But there is no absolute guarantee that the
meaningless prefix will not have some meaning on future processors. For example, the P4
uses segment prefixes on branch instructions as branch prediction hints. The probability is
very low, | would say, that segment prefixes will have any adverse effect on future
processors for instructions that could have a memory operand, i.e. instructions with a mod-
reg-r/m byte.

CS, DS, ES and SS segment prefixes have no effect in 64-bit mode, but they are still
allowed, according to AMDG64 Architecture Programmer’s Manual, Volume 3: General-
Purpose and System Instructions, 2003.

In 64-bit mode, you can also use an empty REX prefix to make instructions longer:

; Example 10.22. Making instructions longer
DB 40H ; empty REX prefix
mov eax, [rbx] ; prefix + instruction = 3 bytes

Empty REX prefixes can safely be applied to almost all instructions in 64-bit mode that do
not already have a REX prefix, except instructions that use aHx, BH, CH or DH. REX prefixes
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cannot be used in 32-bit or 16-bit mode. A REX prefix must come after any other prefixes,
and no instruction can have more than one REX prefix.

AMD's optimization manual recommends the use of up to three operand size prefixes (66H)
as fillers. But this prefix can only be used on instructions that are not affected by this prefix,
i.e. Nop and x87 floating point instructions. Segment prefixes are more widely applicable and
have the same effect - or rather lack of effect.

It is possible to add multiple identical prefixes to any instruction as long as the total
instruction length does not exceed 15. For example, you can have an instruction with two or
three DS segment prefixes. But instructions with multiple prefixes take extra time to decode
on many processors. Do not use more than three prefixes on AMD processors, including
any necessary prefixes. There is no limit to the number of prefixes that can be decoded
efficiently on Intel Core2 and later processors, as long as the total instruction length is no
more than 15 bytes, but earlier Intel processors can handle no more than one or two
prefixes without penalty.

Itis not a good idea to use address size prefixes as fillers because this may slow down
instruction decoding.

Do not place dummy prefixes immediately before a jump label to align it:

; Example 10.23. Wrong way of making instructions longer
Ll: mov ecx,1000
DB 3EH ; DS segment prefix. Wrong!
L2: mov eax, [esi] ; Executed both with and without prefix

In this example, the vMov Eax, [EST] instruction will be decoded with a DS segment prefix
when we come from L1, but without the prefix when we come from 1.2. This works in
principle, but some microprocessors remember where the instruction boundaries are, and
such processors will be confused when the same instruction begins at two different
locations. There may be a performance penalty for this.

Processors supporting the AVX instruction set use VEX prefixes, which are 2 or 3 bytes
long. A 2-bytes VEX prefix can always be replaced by a 3-bytes VEX prefix. A VEX prefix
can be preceded by segment prefixes but not by any other prefixes. No other prefix is
allowed after the VEX prefix. Most instructions using XMM or YMM registers can have a
VEX prefix. Do not mix YMM vector instructions with VEX prefix and XMM instructions
without VEX prefix (see chapter 13.1). A few newer instructions on general purpose
registers also use VEX prefix.

The AVX-512 instruction set uses a 4-bytes prefix names EVEX. Instructions may be made
longer by replacing a VEX prefix by an EVEX prefix.

It is recommended to check hand-coded instructions with a debugger or disassembler to
make sure they are correct.

10.7 Using multi-byte NOPs for alignment

The multi-byte nop instruction has the opcode OF 1F + a dummy memory operand. The
length of the multi-byte nop instruction can be adjusted by optionally adding 1 or 4 bytes of
displacement and a SIB byte to the dummy memory operand and by adding one or more
66H prefixes. An excessive number of prefixes can cause delay on older microprocessors,
but at least two prefixes is acceptable on most processors. NOPs of any length up to 10
bytes can be constructed in this way with no more than two prefixes. If the processor can
handle multiple prefixes without penalty then the length can be up to 15 bytes.
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The multi-byte nop is more efficient than the commonly used pseudo-NOPs such as mov
EAX, EAX OF LEA RAX, [RAX+0]. The multi-byte NOP instruction is supported on all Intel P6
family processors and later, as well as AMD Athlon, K7 and later, i.e. almost all processors
that support conditional moves.

The Sandy Bridge processor has a lower decode-rate for multi-byte NOPs than for other
instructions, including single-byte NOPs with prefixes.

11 Optimizing memory access

Reading from the level-1 cache takes approximately 3 clock cycles. Reading from the level-
2 cache takes in the order of magnitude of 10 clock cycles. Reading from main memory
takes in the order of magnitude of 100 clock cycles. The access time is even longer if a
DRAM page boundary is crossed, and extremely long if the memory area has been
swapped to disk. | cannot give exact access times here because it depends on the
hardware configuration and the figures keep changing thanks to the fast technological
development.

However, it is obvious from these numbers that caching of code and data is extremely
important for performance. If the code has many cache misses, and each cache miss costs
more than a hundred clock cycles, then this can be a very serious bottleneck for the
performance.

More advice on how to organize data for optimal caching are given in manual 1: "Optimizing
software in C++". Processor-specific details are given in manual 3: "The microarchitecture of
Intel, AMD and VIA CPUs" and in Intel's and AMD's software optimization manuals.

11.1 How caching works

A cache is a means of temporary storage that is closer to the microprocessor than the main
memory. Data and code that is used often, or that is expected to be used soon, is stored in
a cache so that it is accessed faster. Different microprocessors have one, two or three
levels of cache. The level-1 cache is close to the microprocessor kernel and is accessed in
just a few clock cycles. A bigger level-2 cache is placed on the same chip or at least in the
same housing.

The level-1 data cache in the P4 processor, for example, can contain 8 kb of data. It is
organized as 128 lines of 64 bytes each. The cache is 4-way set-associative. This means
that the data from a particular memory address cannot be assigned to an arbitrary cache
line, but only to one of four possible lines. The line length in this example is 2° = 64. So each
line must be aligned to an address divisible by 64. The least significant 6 bits, i.e. bit O - 5, of
the memory address are used for addressing a byte within the 64 bytes of the cache line. As
each set comprises 4 lines, there will be 128 / 4 = 32 = 25 different sets. The next five bits,
i.e. bits 6 - 10, of a memory address will therefore select between these 32 sets. The
remaining bits can have any value. The conclusion of this mathematical exercise is that if
bits 6 - 10 of two memory addresses are equal, then they will be cached in the same set of
cache lines. The 64-byte memory blocks that contend for the same set of cache lines are
spaced 2! = 2048 bytes apart. No more than 4 such addresses can be cached at the same
time.

Let me illustrate this by the following piece of code, where b1 holds an address divisible by
64:

; Example 11.1. Level-1 cache contention
again: mov eax, [edi]

mov ebx, [edi + 0804h]

mov ecx, [edi + 1000h]
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mov edx, [edi + 5008h]
mov esi, [edi + 583ch]
sub ebp, 1
jnz again

The five addresses used here all have the same set-value because the differences between
the addresses with the lower 6 bits truncated are multiples of 2048 = 800H. This loop will
perform poorly because at the time we read es1, there is no free cache line with the proper
set-value, so the processor takes the least recently used of the four possible cache lines -
that is the one which was used for eax - and fills it with the data from [EDT+5800H] tO
[EDI+583FH] and reads £s1. Next, when reading 2%, we find that the cache line that held
the value for Eax has now been discarded, so the processor takes the least recently used
line, which is the one holding the £8x value, and so on. We have nothing but cache misses,
but if the 5'th line is changed to Mov EST, [EDI + 5840H] then we have crossed a 64 byte
boundary, so that we do not have the same set-value as in the first four lines, and there will
be no problem assigning a cache line to each of the five addresses.

The cache sizes, cache line sizes, and set associativity on different microprocessors are
described in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs". The
performance penalty for level-1 cache line contention can be quite considerable on older
microprocessors, but on newer processors such as the P4 we are losing only a few clock
cycles because the data are likely to be prefetched from the level-2 cache, which is
accessed quite fast through a full-speed 256 bit data bus. The improved efficiency of the
level-2 cache in the P4 compensates for the smaller level-1 data cache.

The cache lines are always aligned to physical addresses divisible by the cache line size (in
the above example 64). When we have read a byte at an address divisible by 64, then the
next 63 bytes will be cached as well, and can be read or written to at almost no extra cost.
We can take advantage of this by arranging data items that are used near each other
together into aligned blocks of 64 bytes of memory.

The level-1 code cache works in the same way as the data cache, except on processors
with a trace cache (see below). The level-2 cache is usually shared between code and data.

11.2 Trace cache

The Intel P4 and P4E processors have a trace cache instead of a code cache. The trace
cache stores the code after it has been translated to micro-operations (pops) while a normal
code cache stores the raw code without translation. The trace cache removes the
bottleneck of instruction decoding and attempts to store the code in the order in which it is
executed rather than the order in which it occurs in memory. The main disadvantage of a
trace cache is that the code takes more space in a trace cache than in a code cache. Later
Intel processors do not have a trace cache.

11.3 pop cache

The Intel Sandy Bridge and later processors have a traditional code cache before the
decoders and a pop cache after the decoders. The pop cache is a big advantage because
instruction decoding is often a bottleneck on Intel processors. The capacity of the pop cache
is much smaller than the capacity of the level-1 code cache. The pop cache is such a critical
resource that the programmer should economize its use and make sure the critical part of
the code fits into the pop cache. One way to economize trace cache use is to avoid loop
unrolling.

Most AMD processors have instruction boundaries marked in the code cache. This relieves
the critical bottleneck of instruction length decoding and can therefore be seen as an
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alternative to a pop cache. | do not know why this technique is not used in current Intel
processors.

11.4 Alignment of data

All data in RAM should be aligned at addresses divisible by a power of 2 according to this
scheme:

Operand size Alignment
1 (byte) 1
2 (word) 2
4 (dword) 4
6 (fword) 8
8 (gqword) 8
10 (tbyte) 16
16 (oword, xmmword) 16
32 (ymmword) 32
64 (zmmword) 64
Table 11.1. Preferred data alignment

The following example illustrates alignment of static data.

; Example 11.2, alignment of static data

.data
A DQ ?, ? ; A is aligned by 16
B DB 32 DUP (?)
C DD ?
D DW 7
ALIGN 16 ; E must be aligned by 16
E DQ 2, ?
.code
movdga xmmO, [A]
movdga [E], xmmO

In the above example, 2, B and ¢ all start at addresses divisible by 16. D starts at an address
divisible by 4, which is more than sufficient because it only needs to be aligned by 2. An
alignment directive must be inserted before £ because the address after p is not divisible by
16 as required by the MovDoa instruction. Alternatively, E could be placed after 2 or B to
make it aligned.

Most microprocessors have a penalty of several clock cycles when accessing misaligned
data that cross a cache line boundary. AMD K8 and earlier processors also have a penalty
when misaligned data cross an 8-byte boundary, and some early Intel processors (P1,
PMMX) have a penalty for misaligned data crossing a 4-byte boundary. Most processors
have a penalty when reading a misaligned operand shortly after writing to the same
operand.

Most XMM instructions that read or write 16-byte memory operands require that the
operand is aligned by 16. Instructions that accept unaligned 16-byte operands can be quite
inefficient on older processors. However, this restriction is largely relieved with the AVX
instruction set. AVX instructions do not require alignment of memory operands, except for
the explicitly aligned instructions. Processors that support the AVX instruction set generally
handle misaligned memory operands very efficiently.
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Aligning data stored on the stack can be done by rounding down the value of the stack
pointer. The old value of the stack pointer must of course be restored before returning. A
function with aligned local data may look like this:

; Example 11.3a, Explicit alignment of stack (32-bit Windows)
_FuncWithAlign PROC NEAR

push ebp ; Prolog code

mov ebp, esp ; Save value of stack pointer
sub esp, LocalSpace ; Allocate space for local data
and esp, OFFFFFFFOH ; (= -16) Align ESP by 16

mov eax, [ebp+8] ; Function parameter = array
movdgu xmm0O, [eax] ; Load from unaligned array
movddga [esp], xmmO ; Store in aligned space

call SomeOtherFunction ; Call some other function
mov esp, ebp ; Epilog code. Restore esp
pop ebp ; Restore ebp

ret

_FuncWithAlign ENDP

This function uses EBP to address function parameters, and Esp to address aligned local
data. EsP is rounded down to the nearest value divisible by 16 simply by anDp'ing it with -16.
You can align the stack by any power of 2 by axD'ing the stack pointer with the negative
value.

All 64-bit operating systems, and some 32-bit operating systems (Mac OS, optional in Linux)
keep the stack aligned by 16 at all cALL instructions. This eliminates the need for the AND
instruction and the frame pointer. It is necessary to propagate this alignment from one carL
instruction to the next by proper adjustment of the stack pointer in each function:

; Example 11.3b, Propagate stack alignment (32-bit Linux)
FuncWithAlign PROC NEAR

sub esp, 28 ; Allocate space for local data
mov eax, [espt32] ; Function parameter = array
movdgqu xmm0, [eax] ; Load from unaligned array
movdga [esp], xmmO ; Store in aligned space

call SomeOtherFunction ; This call must be aligned

ret

FuncWithAlign ENDP

In example 11.3b we are relying on the fact that the stack pointer is aligned by 16 before the
call to FuncwithAlign. The CALL FuncWithaAlign instruction (not shown here) has pushed
the return address on the stack, whereby 4 is subtracted from the stack pointer. We have to
subtract another 12 from the stack pointer before it is aligned by 16 again. The 12 is not
enough for the local variable that needs 16 bytes so we have to subtract 28 to keep the
stack pointer aligned by 16. 4 for the return address + 28 = 32, which is divisible by 16.
Remember to include any pusH instructions in the calculation. If, for example, there had
been one pusH instruction in the function prolog then we would subtract 24 from esp to keep
it aligned by 16. Example 11.3b needs to align the stack for two reasons. The MovDQA
instruction needs an aligned operand, and the cALL, SomeOtherFunction needs to be
aligned in order to propagate the correct stack alignment to someOtherFunction.

The principle is the same in 64-bit mode:

; Example 11.3c, Propagate stack alignment (64-bit Linux)
FuncWithAlign PROC

sub rsp, 24 ; Allocate space for local data
mov rax, rdi ; Function parameter rdi = array
movdgu xmm0O, [rax] ; Load from unaligned array
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movdga [rsp], xmmO ; Store in aligned space
call SomeOtherFunction ; This call must be aligned

ret
FuncWithAlign ENDP

Here, the return address takes 8 bytes and we subtract 24 from rsp, so that the total
amount subtracted is 8 + 24 = 32, which is divisible by 16. Every pusH instruction subtracts
8 from rsP in 64-bit mode.

Alignment issues are also important when mixing C++ and assembly language. Consider
this C++ structure:

// Example 11.4a, C++ structure
struct abcd {

unsigned char a; // takes 1 byte storage
int b; // 4 bytes storage
short int c; // 2 bytes storage
double d; // 8 bytes storage

box;

Most compilers (but not all) will insert three empty bytes between a and b, and six empty
bytes between c and d in order to give each element its natural alignment. You may change
the structure definition to:

// Example 11.4b, C++ structure
struct abcd {

double d; // 8 bytes storage
int b; // 4 bytes storage
short int c; // 2 bytes storage
unsigned char a; // 1 byte storage
char unused[1]; // £ill up to 16 bytes

}ox;

This has several advantages: The implementation is identical on compilers with and without
automatic alignment, the structure is easily translated to assembly, all members are properly
aligned, and there are fewer unused bytes. The extra unused character in the end makes
sure that all elements in an array of structures are properly aligned.

See page 164 for how to move unaligned blocks of data efficiently.

11.5 Alignment of code

Most microprocessors fetch code in aligned 16-byte or 32-byte blocks. If an important
subroutine entry or jump label happens to be near the end of a 16-byte block then the
microprocessor will only get a few useful bytes of code when fetching that block of code. It
may have to fetch the next 16 bytes too before it can decode the first instructions after the
label. This can be avoided by aligning important subroutine entries and loop entries by 16.
Aligning by 8 will assure that at least 8 bytes of code can be loaded with the first instruction
fetch, which may be sufficient if the instructions are small. We may align subroutine entries
by the cache line size (typically 64 bytes) if the subroutine is part of a critical hot spot and
the preceding code is unlikely to be executed in the same context.

A disadvantage of code alignment is that some cache space is lost to empty spaces before
the aligned code entries.

In most cases, the effect of code alignment is minimal. So my recommendation is to align
code only in the most critical cases like critical subroutines and critical innermost loops.
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Aligning a subroutine entry is as simple as putting as many nop's as needed before the
subroutine entry to make the address divisible by 8, 16, 32 or 64, as desired. The assembler
does this with the Ar16N directive. The nop's that are inserted will not slow down the
performance because they are never executed.

It is more problematic to align a loop entry because the preceding code is also executed. It
may require up to 15 nor's to align a loop entry by 16. These nor's will be executed before
the loop is entered and this will cost processor time. It is more efficient to use longer
instructions that do nothing than to use a lot of single-byte nop's. The best modern
assemblers will do just that and use instructions like Mov Eax,EAX and

LEA EBX, [EBX+00000000H] to fill the space before an ALIGN nn Statement. The LEA
instruction is particularly flexible. It is possible to give an instruction like LEA EBX, [EBX]
any length from 2 to 8 by variously adding a SIB byte, a segment prefix and an offset of one
or four bytes of zero. Don't use a two-byte offset in 32-bit mode as this will slow down
decoding. And don't use more than one prefix because this will slow down decoding on
older Intel processors.

Using pseudo-NOPs such as mMov rax, Rax and LEA RBX, [RBx+0] as fillers has the
disadvantage that it has a false dependence on the register, and it uses execution
resources. It is better to use the multi-byte nop instruction which can be adjusted to the
desired length. The multi-byte nop instruction is available in all processors that support
conditional move instructions, i.e. Intel PPro, P2, AMD Athlon, K7 and later.

An alternative way of aligning a loop entry is to code the preceding instructions in ways that
are longer than necessary. In most cases, this will not add to the execution time, but
possibly to the instruction fetch time. See page 79 for details on how to code instructions in
longer versions.

The most efficient way to align an innermost loop is to move the preceding subroutine entry.
The following example shows how to do this:

; Example 11.5, Aligning loop entry

ALIGN 16

X1 =9 ; Replace value with whatever X2 is.
DB (-X1 AND OFH) DUP (90H) ; Insert calculated number of NOP's.
INNERFUNCTION PROC NEAR ; This address will be adjusted

mov eax, [esp+t4]
mov ecx,10000

INNERLOOP: ; Loop entry will be aligned by 16
X2 = INNERLOOP - INNERFUNCTION ; This value is needed above

.ERRNZ X1 NE X2 ; Make error message 1if X1 != X2

sub ecx, 1
jnz  INNERLOOP
ret

INNERFUNCTION ENDP

This code looks awkward because most assemblers cannot resolve the forward reference to
a difference between two labels in this case. x2 is the distance from INNERFUNCTTION tO
INNERLOOP. X1 must be manually adjusted to the same value as x2 by looking at the
assembly listing. The .errNZ line will generate an error message from the assembler if x1
and x2 are different. The number of bytes to insert before 1nNERFUNCTTION in order to align
INNERLOOP by 16 is ((-x1) modulo 16). The modulo 16 is calculated here by AND'ing with
15. The pB line calculates this value and inserts the appropriate number of noP's with
opcode 90H.
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INNERLOOP is aligned here by misaligning 1nNERFUNCTION. The cost of misaligning
INNERFUNCTION IS negligible compared to the gain by aligning I1nNERLOOP because the latter
label is jumped to 10000 times as often.

11.6 Organizing data for improved caching

The caching of data works best if critical data are contained in a small contiguous area of
memory. The best place to store critical data is on the stack. The stack space that is
allocated by a subroutine is released when the subroutine returns. The same stack space is
then reused by the next subroutine that is called. Reusing the same memory area gives the
optimal caching. Variables should therefore be stored on the stack rather than in the data
segment when possible.

Floating point constants are typically stored in the data segment. This is a problem because
it is difficult to keep the constants used by different subroutines contiguous. An alternative is
to store the constants in the code. In 64-bit mode it is possible to load a double precision
constant via an integer register to avoid using the data segment. Example:

; Example 11.6a. Loading double constant from data segment
.data
Cl DQ SomeConstant

.code
movsd xmmO, Cl1

This can be changed to:

; Example 11.6b. Loading double constant from register (64-bit mode)

.code
mov rax, SomeConstant
movqg xmm0, rax ; Some assemblers use 'movd' for this instruction

See page 134 for various methods of generating constants without loading data from
memory. This is advantageous if data cache misses are expected, but not if data caching is
efficient.

Constant tables are typically stored in the data segment. It may be advantageous to copy
such a table from the data segment to the stack outside the innermost loop if this can
improve caching inside the loop.

Static variables are variables that are preserved from one function call to the next. Such
variables are typically stored in the data segment. It may be a better alternative to
encapsulate the function together with its data in a class. The class may be declared in the
C++ part of the code even when the member function is coded in assembly.

Data structures that are too large for the data cache should preferably be accessed in a
linear, forward way for optimal prefetching and caching. Non-sequential access can cause
cache line contentions if the stride is a high power of 2. Manual 1: "Optimizing software in
C++" contains examples of how to avoid access strides that are high powers of 2.

11.7 Organizing code for improved caching

The caching of code works best if the critical part of the code is contained within a
contiguous area of memory no bigger than the code cache. Avoid scattering critical
subroutines around at random memory addresses. Rarely accessed code such as error
handling routines should be kept separate from the critical hot spot code.
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It may be useful to split the code segment into different segments for different parts of the
code. For example, you may make a hot code segment for the code that is executed most
often and a cold code segment for code that is not speed-critical.

Alternatively, you may control the order in which modules are linked, so that modules that
are used in the same part of the program are linked at addresses near each other.

Dynamic linking of function libraries (DLL's or shared objects) makes code caching less
efficient. Dynamic link libraries are typically loaded at round memory addresses. This can
cause cache contentions if the distances between multiple DLL's are divisible by high
powers of 2.

11.8 Cache control instructions

Memory writes are more expensive than reads when cache misses occur in a write-back
cache. A whole cache line has to be read from memory, modified, and written back in case
of a cache miss. This can be avoided by using the non-temporal write instructions MOVNTT,
MOVNTQ, MOVNTDQ, MOVNTPD, MOVNTPS. These instructions should be used when writing to a
memory location that is unlikely to be cached and unlikely to be read from again before the
would-be cache line is evicted. As a rule of thumb, it can be recommended to use non-
temporal writes only when writing a memory block that is bigger than half the size of the
largest-level cache.

Explicit data prefetching with the PREFETCH instructions can sometimes improve cache
performance, but in most cases the automatic prefetching is sufficient.

12 Loops

The critical hot spot of a CPU-intensive program is almost always a loop. The clock
frequency of modern computers is so high that even the most time-consuming instructions,
cache misses and inefficient exceptions are finished in a fraction of a microsecond. The
delay caused by inefficient code is only noticeable when repeated millions of times. Such
high repeat counts are likely to be seen only in the innermost level of a series of nested
loops. The things that can be done to improve the performance of loops is discussed in this
chapter.

12.1 Minimize loop overhead

The loop overhead is the instructions needed for jumping back to the beginning of the loop
and to determine when to exit the loop. Optimizing these instructions is a fairly general
technique that can be applied in many situations. Optimizing the loop overhead is not
needed, however, if some other bottleneck is limiting the speed. See page 93ff for a
description of possible bottlenecks in a loop.

A typical loop in C++ may look like this:

// Example 12.la. Typical for-loop in C++
for (int 1 = 0; 1 < n; 1i++) {

// (loop body)
}

Without optimization, the assembly implementation will look like this:
; Example 12.1b. For-loop, not optimized

mov ecx, n ; Load n
XOr eax, eax ;1 =0
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LoopTop:

cmp  eax, ecx ; 1 < n
jge LoopEnd ; Exit when 1 >=n
; (loop body) ; Loop body goes here
add eax, 1 ;o 1++
jmp LoopTop ; Jump back
LoopEnd:

It may be unwise to use the inc instruction for adding 1 to the loop counter. The inc
instruction has a problem with writing to only part of the £1ags register, which makes it less
efficient than the add instruction on Intel P4 processors and may cause false dependences
on other processors.

The most important problem with the loop in example 12.1b is that there are two jump
instructions. We can eliminate one jump from the loop by putting the branch instruction in
the end:

; Example 12.1c. For-loop with branch in the end

mov ecx, n ; Load n

test ecx, ecx ; Test n

jng LoopEnd ; Skip 1if n <= 0

Xor eax, eax ;1 =0
LoopTop:

; (loop body) ; Loop body goes here

add eax, 1 ; 1++

cmp  eax, ecx ;1< n

J1 LoopTop ; Loop back if i < n
LoopEnd:

Now we have got rid of the unconditional jump instruction in the loop by putting the loop exit
branch in the end. We have to put an extra check before the loop to cover the case where
the loop should run zero times. Without this check, the loop would run one time when n = 0.

The method of putting the loop exit branch in the end can even be used for complicated
loop structures that have the exit condition in the middle. Consider a C++ loop with the exit
condition in the middle:

// Example 12.2a. C++ loop with exit in the middle

int 1 = 0;

while (true) {
FuncA () ; // Upper loop body
if (++i >= n) break; // Exit condition here
FuncB () ; // Lower loop body

This can be implemented in assembly by reorganizing the loop so that the exit comes in the
end and the entry comes in the middle:

; Example 12.2b. Assembly loop with entry in the middle

X0or eax, eax ;1 =0

jmp LoopEntry ; Jump into middle of loop
LoopTop:

call FuncB ; Lower loop body comes first
LoopEntry:

call FuncA ; Upper loop body comes last

add eax, 1
cmp eax, n
jge LoopTop ; Exit condition in the end

90



The cmp instruction in example 12.1c and 12.2b can be eliminated if the counter ends at
zero because we can rely on the add instruction for setting the zero flag. This can be done
by counting down from n to zero rather counting up from zero to n:

; Example 12.3. Loop with counting down

mov ecx, n ; Load n

test ecx, ecx ; Test n

jng LoopEnd ; Skip 1if n <= 0
LoopTop:

; (loop body) ; Loop body goes here

sub ecx, 1 ; n—-

jnz LoopTop ; Loop back if not zero
LoopEnd:

Now the loop overhead is reduced to just two instructions, which is the best possible. The
jecxz and loop instructions should be avoided because they are less efficient.

The solution in example 12.3 is not good if i is needed inside the loop, for example for an
array index. The following example adds 1 to all elements in an integer array:

; Example 12.4a. For-loop with array

mov ecx, n ; Load n

test ecx, ecx ; Test n

jng LoopEnd ; Skip 1if n <= 0

XOor eax, eax ; 1 =0

lea esi, Array ; Pointer to an array
LoopTop:

; Loop body: Add 1 to all elements in Array:

add dword ptr [esi+d*eax], 1

add eax, 1 ; 1++

cmp eax, ecx ;1< n

J1 LoopTop ; Loop back if i < n
LoopEnd:

The address of the start of the array is in esi and the index in eax. The index is multiplied
by 4 in the address calculation because the size of each array element is 4 bytes.

It is possible to modify example 12.4a to make it count down rather than up, but the data
cache is optimized for accessing data forwards, not backwards. Therefore it is better to
count up through negative values from -n to zero. This is possible by making a pointer to
the end of the array and using a negative offset from the end of the array:

; Example 12.4b. For-loop with negative index from end of array

mov ecx, n ; Load n

lea esi, Array[4*ecx] ; Point to end of array

neg ecx ; 1 = -n

jnl LoopEnd ; Skip 1if (-n) >= 0
LoopTop:

; Loop body: Add 1 to all elements in Array:

add dword ptr [esi+4d*ecx], 1

add ecx, 1 ; 1++

Jjs LoopTop ; Loop back if 1 < 0
LoopEnd:

A slightly different solution is to multiply n by 4 and count from -4+*n to zero:

; Example 12.4c. For-loop with neg. index multiplied by element size

mov ecx, n
shl ecx, 2

jng LoopEnd

lea esi, Arraylecx] H

; Load n

; n * 4

; Skip 1if (4*n) <= 0
Point to end of array
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neg ecx ; 1 = —-4*n

LoopTop:
; Loop body: Add 1 to all elements in Array:
add dword ptr [esitecx], 1

add ecx, 4 ;1 4= 4
Js LoopTop ; Loop back if 1 < 0
LoopEnd:

There is no difference in speed between example 12.4b and 12.4c, but the latter method is
useful if the size of the array elements is not 1, 2, 4 or 8 so that we cannot use the scaled
index addressing.

The loop counter should always be an integer because floating point compare instructions
are less efficient than integer compare instructions, even with the SSE2 instruction set.
Some loops have a floating point exit condition by nature. A well-known example is a Taylor
expansion which is ended when the terms become sufficiently small. It may be useful in
such cases to always use the worst-case maximum repeat count (see page 108). The cost
of repeating the loop more times than necessary is often less than what is saved by
avoiding the calculation of the exit condition in the loop and using an integer counter as loop
control. A further advantage of this method is that the loop exit branch becomes more
predictable. Even when the loop exit branch is mispredicted, the cost of the misprediction is
smaller with an integer counter because the integer instructions are likely to be executed
way ahead of the slower floating point instructions so that the misprediction can be resolved
much earlier.

12.2 Induction variables

If the floating point value of the loop counter is needed for some other purpose then it is
better to have both an integer counter and a floating point counter. Consider the example of
a loop that makes a sine table:

// Example 12.5a. C++ loop to make sine table
double Table[100]; int i;
for (i = 0; i < 100; i++) Table[i] = sin(0.01 * 1i);

This can be changed to:

// Example 12.5b. C++ loop to make sine table
double Table[100], x; int 1i;
for (i = 0, x = 0.; 1 < 100; i++, x += 0.01) Table[i] = sin(x);

Here we have an integer counter i for the loop control and array index, and a floating point
counter x for replacing 0.01+*i. The calculation of x by adding 0.01 to the previous value is
much faster than converting i to floating point and multiplying by 0.01. The assembly
implementation looks like this:

; Example 12.5c. Assembly loop to make sine table

.data
align 8
MO 01 dg 0.01 ; Define constant 0.01
_Table dg 100 dup (?) ; Define Table
.code
XOor eax, eax ;1 =0
fld MO 01 ; Load constant 0.01
fldz ; x = 0.
LoopTop:
fl1d st (0) ; Copy x
fsin ; sin (x)
fstp Table[eax*8] ; Table[i] = sin(x)
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fadd st (0), st(l) ;o x += 0.01
add eax, 1 ; 1++

cmp eax, 100 ;1 < n

Jb LoopTop ; Loop

fcompp Discard st (0) and st (1)

There is no need to optimize the loop overhead in this case because the speed is limited by
the floating point calculations. Another possible optimization is to use a library function that
calculates two or four sine values at a time in an XMM register. Such functions can be found
in libraries from Intel and AMD, see manual 1: "Optimizing software in C++".

The method of calculating x in example 12.5c¢ by adding 0. 01 to the previous value rather
than multiplying i by 0.01 is commonly known as using an induction variable. Induction
variables are useful whenever it is easier to calculate some value in a loop from the
previous value than to calculate it from the loop counter. An induction variable can be
integer or floating point. The most common use of induction variables is for calculating array
addresses, as in example 12.4c, but induction variables can also be used for more complex
expressions. Any function that is an n'th degree polynomial of the loop counter can be
calculated with just n additions and no multiplications by the use of n induction variables.
See manual 1: "Optimizing software in C++" for an example.

The calculation of a function of the loop counter by the induction variable method makes a
loop-carried dependency chain. If this chain is too long then it may be advantageous to

calculate each value from a value that is two or more iterations back, as in the Taylor
expansion example on page 111.

12.3 Move loop-invariant code

The calculation of any expression that doesn't change inside the loop should be moved out
of the loop.

The same applies to if-else branches with a condition that doesn't change inside the loop.

Such a branch can be avoided by making two loops, one for each branch, and making a
branch that chooses between the two loops.

12.4 Find the bottlenecks

There are a number of possible bottlenecks that can limit the performance of a loop. The
most likely bottlenecks are:

e Cache misses and cache contentions
e Loop-carried dependency chains

¢ Instruction fetching

¢ Instruction decoding

e Instruction retirement

e Register read stalls

e Execution port throughput

e Execution unit throughput
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e Suboptimal reordering and scheduling of pops
e Branch mispredictions
¢ Floating point exceptions and subnormal operands

If one particular bottleneck is limiting the performance then it doesn't help to optimize
anything else. It is therefore very important to analyze the loop carefully in order to identify
which bottleneck is the limiting factor. Only when the narrowest bottleneck has successfully
been removed does it make sense to look at the next bottleneck. The various bottlenecks
are discussed in the following sections. All these details are processor-specific. See manual
3: "The microarchitecture of Intel, AMD and VIA CPUs" for explanation of the processor-
specific details mentioned below.

Sometimes a lot of experimentation is needed in order to find and fix the limiting bottleneck.
It is important to remember that a solution found by experimentation is CPU-specific and
unlikely to be optimal on CPUs with a different microarchitecture.

12.5 Instruction fetch, decoding and retirement in a loop

The details about how to optimize instruction fetching, decoding, retirement, etc. is
processor-specific, as mentioned on page 63.

If code fetching is a bottleneck then it is necessary to align the loop entry by 16 and reduce
instruction sizes in order to minimize the number of 16-byte boundaries in the loop.

If instruction decoding is a bottleneck then it is necessary to observe the CPU-specific rules
about decoding patterns. Avoid complex instructions such as 1.oop, JECXZ, LODS, STOS, etc.

Register read stalls can occur in some Intel processors. If register read stalls are likely to
occur then it can be necessary to reorder instructions or to refresh registers that are read
multiple times but not written to inside the loop.

Jumps and calls inside the loop should be avoided because it delays code fetching.
Subroutines that are called inside the loop should be inlined if possible.

Branches inside the loop should be avoided if possible because they interfere with the
prediction of the loop exit branch. However, branches should not be replaced by conditional
moves if this increases the length of a loop-carried dependency chain.

If instruction retirement is a bottleneck then it may be preferred to make the total number of
pops inside the loop a multiple of the retirement rate (4 for Core2, 3 for all other
processors). Some experimentation is needed in this case.

12.6 Distribute pops evenly between execution units

Manual 4: "Instruction tables" contains tables of how many pops each instruction generates
and which execution port each pop goes to. This information is CPU-specific, of course. It is
necessary to calculate how many pops the loop generates in total and how many of these
Hops go to each execution port and each execution unit.

The time it takes to retire all instructions in the loop is the total number of pops divided by
the retirement rate. The retirement rate is 4 pops per clock cycle for Intel Core2 and later
processors. The calculated retirement time is the minimum execution time for the loop. This
value is useful as a norm which other potential bottlenecks can be compared against.
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The throughput for an execution port is 1 pop per clock cycle on most Intel processors. The

load on a particular execution port is calculated as the number of pops that goes to this port
divided by the throughput of the port. If this value exceeds the retirement time as calculated

above, then this particular execution port is likely to be a bottleneck. AMD processors do not
have execution ports, but they have three or four pipelines with similar throughputs.

There may be more than one execution unit on each execution port on Intel processors.
Most execution units have the same throughput as the execution port. If this is the case
then the execution unit cannot be a narrower bottleneck than the execution port. But an
execution unit can be a bottleneck in the following situations: (1) if the throughput of the
execution unit is lower than the throughput of the execution port, e.g. for multiplication and
division; (2) if the execution unit is accessible through more than one execution port; and (3)
on AMD processors that have no execution ports.

The load on a particular execution unit is calculated as the total number of pops going to
that execution unit multiplied by the reciprocal throughput for that unit. If this value exceeds
the retirement time as calculated above, then this particular execution unit is likely to be a
bottleneck.

12.7 An example of analysis for bottlenecks in vector loops

The way to do these calculations is illustrated in the following example, which is the so-
called DAXPY algorithm used in linear algebra:

// Example 12.6a. C++ code for DAXPY algorithm

int i; const int n = 100;
double X[n]; double Y[n]; double DA;
for (1 = 0; 1 < n; 1i++) YJ[i] = Y[1i] - DA * X[1];

The following implementation is for a processor with the SSE2 instruction set in 32-bit
mode, assuming that x and v are aligned by 16:
; Example 12.6b.

DAXPY algorithm, 32-bit mode

n = 100 ; Define constant n (even and positive)
mov ecx, n * 8 ; Load n * sizeof (double)
XOr eax, eax ; 1 =0
lea esi, [X] ; X must be aligned by 16
lea edi, [Y] ; Y must be aligned by 16
movsd xmm2, [DA] ; Load DA
shufpd xmm2, xmm2, O ; Get DA into both gwords of xmm2
; This loop does 2 DAXPY calculations per iteration, using vectors:

Ll: movapd xmml, [esiteax] ; X[1i], X[i+1]
mulpd xmml, xmm2 ; X[1i] * DA, X[i+1] * DA
movapd xmmO, [edit+eax] ;o Y[i], Y[i+1]
subpd xmm0O, xmml ; Y[1]-X[i]*DA, Y[i+1]-X[i+1]*DA
movapd [editeax], xmm0O ; Store result
add eax, 16 ; Add size of two elements to index
cmp eax, ecx ; Compare with n*8
31 L1 ; Loop back

Now let's analyze this code for bottlenecks on a Pentium M processor, assuming that there
are no cache misses. The CPU-specific details that | am referring to are explained in
manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

We are only interested in the loop, i.e. the code after 1.1. We need to list the pop breakdown
for all instructions in the loop, using the table in manual 4: "Instruction tables". The list looks
as follows:

Instruction pHops

fused

execution
units

pops for each
execution port
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port port port port port port FADD | FMUL
0 1 Oorl 2 3 4
movapd xmml, [esiteax] 2 2
mulpd xmml, xmm2 2 2 2
movapd xmmO, [editeax] 2 2
subpd xmm0O, xmml 2 2 2
movapd [editeax], xmmO 2 2 2
add eax, 16 1 1
cmp eax, ecx 1 1
j1 L1 1 1
Total 13 2 1 4 4 2 2 2 2

Table 12.1. Total pops for DAXPY loop on Pentium M

The total number of pops going to all the ports is 15. The 4 pops from movapd
[edi+eax],xmm0 are fused into 2 pops so the total number of pops in the fused domain is
13. The total retirement time is 13 pops / 3 pops per clock cycle = 4.33 clock cycles.

Now, we will calculate the number of pops going to each port. There are 2 pops for port 0, 1
for port 1, and 4 which can go to either port O or port 1. This totals 7 pops for port 0 and port
1 combined so that each of these ports will get 3.5 pops on average per iteration. Each port
has a throughput of 1 pop per clock cycle so the total load corresponds to 3.5 clock cycles.
This is less than the 4.33 clock cycles for retirement, so port 0 and 1 will not be bottlenecks.
Port 2 receives 4 pops per clock cycle so it is close to being saturated. Port 3 and 4 receive
only 2 pops each.

The next analysis concerns the execution units. The FADD unit has a throughput of 1 pop
per clock and it can receive pops from both port 0 and 1. The total load is 2 pops / 1 pop per
clock = 2 clocks. Thus the FADD unit is far from saturated. The FMUL unit has a throughput
of 0.5 pop per clock and it can receive pops only from port 0. The total load is 2 pops / 0.5
pop per clock = 4 clocks. Thus the FMUL unit is close to being saturated.

There is a dependency chain in the loop. The latencies are: 2 for memory read, 5 for
multiplication, 3 for subtraction, and 3 for memory write, which totals 13 clock cycles. This is
three times as much as the retirement time but it is not a loop-carried dependence because
the results from each iteration are saved to memory and not reused in the next iteration.
The out-of-order execution mechanism and pipelining makes it possible that each
calculation can start before the preceding calculation is finished. The only loop-carried
dependency chain is add eax, 16 which has a latency of only 1.

The time needed for instruction fetching can be calculated from the lengths of the
instructions. The total length of the eight instructions in the loop is 30 bytes. The processor
needs to fetch two 16-byte blocks if the loop entry is aligned by 16, or at most three 16-byte
blocks in the worst case. Instruction fetching is therefore not a bottleneck.

Instruction decoding in the PM processor follows the 4-1-1 pattern. The pattern of (fused)
pops for each instruction in the loop in example 12.6b is 2-2-2-2-2-1-1-1. This is not optimal,
and it will take 6 clock cycles to decode. This is more than the retirement time, so we can
conclude that instruction decoding is the bottleneck in example 12.6b. The total execution
time is 6 clock cycles per iteration or 3 clock cycles per calculated v [1i] value. The decoding
can be improved by moving one of the 1-pop instructions and by changing the sign of xmm?2
so that movapd xmm0, [edi+eax] and subpd xmm0,xmml can be combined into one
instruction addpd xmmil, [edi+eax]. We will therefore change the code of the loop as
follows:

; Example 12.6c. Loop of DAXPY algorithm with improved decoding
.data
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align 16

SignBit DD 0, 80000000H ; gword with sign bit set
n = 100 ; Define constant n (even and positive)
.code
mov ecx, n * 8 ; Load n * sizeof (double)
XOr eax, eax ;1 =0
lea esi, [X] ; X must be aligned by 16
lea edi, [Y] ; Y must be aligned by 16
movsd xmm2, [DA] ; Load DA
xorpd xmm2, [SignBit] ; Change sign
shufpd xmm2, xmm2, O ; Get -DA into both gwords of xmm2
Ll: movapd xmml, [esiteax] ; X[i], X[i+1]
mulpd xmml, xmm2 ; X[i] * (=DA), X[i+1] * (-DA)
addpd xmml, [edi+eax] ; Y[1]-X[i]1#*DA, Y[i+1]-X[1i+1]*DA
add eax, 16 ; Add size of two elements to index
movapd [editeax-16],xmml ; Address corrected for changed eax
cmp eax, ecx ; Compare with n*8
31 L1 ; Loop back

The number of pops in the loop is the same as before, but the decode pattern is now 2-2-4-
1-2-1-1 and the decode time is reduced from 6 to 4 clock cycles so that decoding is no
longer a bottleneck.

An experimental test shows that the expected improvement is not obtained. The execution
time is only reduced from 6.0 to 5.6 clock cycles per iteration. There are three reasons why
the execution time is higher than the expected 4.3 clocks per iteration.

The first reason is register read stalls. The reorder buffer can handle no more than three
reads per clock cycle from registers that have not been modified recently. Register esi, edi,
ecx and xmm2 are not modified inside the loop. xmm2 counts as two because it is
implemented as two 64-bit registers. eax also contributes to the register read stalls
because its value has enough time to retire before it is used again. This causes a register
read stall in two out of three iterations. The execution time can be reduced to 5.4 by moving
the add eax, 16 instruction up before the mulpd so that the reads of register esi, xmm2 and
edi are separated further apart and therefore prevented from going into the reorder buffer in
the same clock cycle.

The second reason is retirement. The number of fused pops in the loop is not divisible by 3.
Therefore, the taken jump to L1 will not always go into the first slot of the retirement station
which it has to. This can sometimes cost a clock cycle.

The third reason is that the two pops for addpd may be issued in the same clock cycle
through port 0 and port 1, respectively, though there is only one execution unit for floating
point addition. This is the consequence of a bad design, as explained in manual 3: "The
microarchitecture of Intel, AMD and VIA CPUs".

A solution which happens to work better is to get rid of the cmp instruction by using a
negative index from the end of the arrays:

; Example 12.6d. Loop of DAXPY algorithm with negative indexes

.data
align 16
SignBit DD 0, 80000000H ; gword with sign bit set
n = 100 ; Define constant n (even and positive)
.code
mov eax, -n * 8 ; Index = -n * sizeof (double)
lea esi, [X + 8 * n] ; Point to end of array X (aligned)
lea edi, [Y + 8 * n] ; Point to end of array Y (aligned)
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movsd xmm2, [DA] ; Load DA

xorpd xmm2, [SignBit] ; Change sign

shufpd xmm2, xmm2, O ; Get -DA into both gwords of xmm2
Ll: movapd xmml, [esiteax] ; X[i], X[i+1]

mulpd xmml, xmm2 ; X[1] * (-DA), X[i+1l] * (-DA)

addpd xmml, [edi+eax] ; Y[1]-X[i]1*DA, Y[i+1]-X[1i+1]*DA

movapd [editeax],xmml ; Store result

add eax, 16 ; Add size of two elements to index

Jjs L1 ; Loop back

This removes one pop from the loop. My measurements show an execution time for
example 12.6d of 5.0 clock cycles per iteration on a PM processor. The theoretical minimum
is 4. The register read stalls have disappeared because eax nhow has less time to retire
before it is used again. The retirement is also improved because the number of fused pops
in the loop is now 12, which is divisible by the retirement rate of 3. The problem with the
floating point addition pops clashing remains and this is responsible for the extra clock
cycle. This problem can only be targeted by experimentation. | found that the optimal order
of the instructions has the add instruction immediately after the mulpd:

; Example 12.6e. Loop of DAXPY. Optimal solution for PM

.data
align 16
SignBit DD 0, 80000000H ; gword with sign bit set
n = 100 ; Define constant n (even and positive)
.code
mov eax, -n * 8 ; Index = -n * sizeof (double)
lea esi, [X + 8 * n] ; Point to end of array X (aligned)
lea edi, [Y + 8 * n] ; Point to end of array Y (aligned)
movsd xmm2, [DA] ; Load DA
xorpd xmm2, [SignBit] ; Change sign
shufpd xmm2, xmm2, O ; Get -DA into both gwords of xmm2
Ll: movapd xmml, [esiteax] ;
mulpd xmml, xmm2 ;
add eax, 16 ; Optimal position of add instruction
addpd =xmml, [edi+teax-16]; Address corrected for changed eax
movapd [editeax-16],xmml ; Address corrected for changed eax
js L1 ;

The execution time is now reduced to 4.0 clock cycles per iteration, which is the theoretical
minimum. An analysis of the bottlenecks in the loop of example 12.6e gives the following
results: The decoding time is 4 clock cycles. The retirement time is 12 / 3 = 4 clock cycles.
Port 0 and 1 are used at 75% or their capacity. Port 2 is used 100%. Port 3 and 4 are used
50%. The FMUL execution unit is used at 100% of its maximum throughput. The FADD unit
is used 50%. The conclusion is that the speed is limited by four equally narrow bottlenecks
and that no further improvement is possible.

The fact that we found an instruction order that removes the floating point pop clashing
problem is sheer luck. In more complicated cases there may not exist a solution that
eliminates this problem.

12.8 Same example on Core2

The same loop will run more efficiently on a Core2 thanks to better pop fusion and more
powerful execution units. Example 12.6¢ and 12.6d are good candidates for running on a
Core2. The j1 11 instruction in example 12.6¢ should be changed to jb 1.1 in order to
enable macro-op fusion in 32-bit mode. This change is possible because the loop counter
cannot be negative in example 12.6c.
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We will now analyze the resource use of the loop in example 12.6d for a Core2 processor.
The resource use of each instruction in the loop is listed in table 12.2 below.

2 22 | 58 %5
= Q = D &5 0O o
c 5 c o c .
2 ,Q.. o = 0
= = o o =
S S 3 S o
) 8
= >
port | port | port | port | port | port
0 1 5 2 3 4
movapd xmml, [esi+eax] 5 1 1
mulpd xmml, xmm2 4 1 1
addpd xmml, [editeax] 5 1 1 1
movapd [edi+eax], xmml 5 1 1 1
add eax, 16 3 1 X X X
js L1 2 1 1
Total 24 6 1.33 | 1.33 | 1.33 2 1 1

Table 12.2. Total pops for DAXPY loop on Core2 (example 12.6d).

Predecoding is not a problem here because the total size of the loop is less than 64 bytes.
There is no need to align the loop because the size is less than 50 bytes. If the loop had
been bigger than 64 bytes then we would notice that the predecoder can handle only the
first three instructions in one clock cycle because it cannot handle more than 16 bytes.

There are no restrictions on the decoders because all the instructions generate only a single
pop each. The decoders can handle four instructions per clock cycle, so the decoding time
will be 6/4 = 1.5 clock cycles per iteration.

Port 0, 1 and 2 each have one pop that can go nowhere else. In addition, the App EAX, 16
instruction can go to any one of these three ports. If these instructions are distributed evenly
between port 0, 1 and 2, then these ports will be busy for 1.33 clock cycle per iteration on
average.

Port 3 receives two pops per iteration for reading x[i] and v [i]. We can therefore
conclude that memory reads on port 3 is the bottleneck for the DAXPY loop, and that the
execution time is 2 clock cycles per iteration.

Example 12.6¢ has one instruction more than example 12.6d, which we have just analyzed.
The extra instruction is cMp EAX, ECX, Which can go to any of the ports 0, 1 and 2. This will
increase the pressure on these ports to 1.67, which is still less than the 2 pops on port 3.
The extra pop can be eliminated by macro-op fusion in 32-bit mode, but not in 64-bit mode.

The floating point addition and multiplication units all have a throughput of 1. These units
are therefore not bottlenecks in the DAXPY loop.

We need to consider the possibility of register read stalls in the loop. Example 12.6¢ has
four registers that are read, but not modified, inside the loop. This is register Es1, EDT, XMM2
and ecx. This could cause a register read stall if all of these registers were read within four
consecutive pops. But the pops that read these registers are spaced so much apart that no
more than three of these can possibly be read in four consecutive pops. Example 12.6d has
one register less to read because Ecx is not used. Register read stalls are therefore unlikely
to cause troubles in these loops.
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The conclusion is that the Core2 processor runs the DAXPY loop in half as many clock

cycles as the PM. The problem with pop clashing that made the optimization particularly

difficult on the PM has been eliminated in the Core2 design.

12.9 Same example on Sandy Bridge

The number of elements in a vector register can be doubled on processors with the AVX

instruction set, using YMM registers, as shown in the next example:

; Example 12.6f. Loop of DAXPY for processors with AVX

.data
SignBit DD 0, 80000000H ; gword with sign bit set
n = 100 ; Define constant n (divisible by 4)
.code
vbroadcastsd ymmO, [SignBit] ; preload sign bit x 4
mov eax, -n * 8 ; Index = -n * sizeof (double)
lea rsi, [X + 8 * n] ; Point to end of array X (aligned)
lea rdi, [Y + 8 * n] ; Point to end of array Y (aligned)
vbroadcastsd ymm2, [DA] ; Load DA x 4
vxorpd ymm2, ymm2, ymmO ; Change sign
align 32
Ll: vmulpd ymml, ymm2, [rsi+rax] ; X[1]*(-DA)
vaddpd ymml, ymml, [rdi+rax] ; Y[i]-X[i]*DA
vmovapd [rdit+rax], ymml ; Store (vmovupd if not aligned by 32)
add rax, 32 ; Add size of four elements to index
31 L1 ; Loop back
vzeroupper ; If subsequent code is non-VEX

We will now analyze the resource use of the loop in example 12.6f for a Sandy Bridge

processor. The resource use of each instruction in the loop is listed in table 12.2 below.
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0 1 5 2 3 4
vmulpd ymml, ymm2, [rsitrax] 5 1 1 1+
vaddpd ymml, ymml, [rdi+trax] 5 1 1 1+
vmovapd [rdi+rax], ymml 5 1 1 1+
add rax, 32 4 0.5 0.5
31 L1 2 0.5 0.5
Total 21 4 1 1 1 2 1+ 1+

Table 12.3. Total pops for DAXPY loop on Sandy Bridge (example 12.6f).

The instruction length is not important if we assume that the loop resides in the pop cache.
The app and J1. instructions are most likely fused together, using only 1 pop together. There

are two 256-bit read operations, each using a read port for two consecutive clock cycles,
which is indicated as 1+ in the table. Using both read ports (port 2 and 3), we will have a

throughput of two 256-bit reads in two clock cycles. One of the read ports will make an
address calculation for the write in the second clock cycle. The write port (port 4) is

occupied for two clock cycles by the 256-bit write. The limiting factor will be the read and

write operations, using the two read ports and the write port at their maximum capacity. Port
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0, 1 and 5 are used at half capacity. There is no loop-carried dependency chain. Thus, the
expected throughput is one iteration of four calculations in two clock cycles.

Unfortunately, the probability of cache bank conflicts is high due to the high number of
memory operations. It is difficult to predict which operands will be read or written
simultaneously because many iterations are in flight at a time. My tests on a Sandy Bridge
showed that the theoretical time of 2 clock cycles per iteration is never obtained. The best
result was 2.2 clocks per iteration when the distance between rs1 and rDI is a multiple of 4
kbytes. In other cases, the time was 2.6 clock cycles or more per iteration.

12.10 Same example with FMA4

The AMD Bulldozer is the first x86 processor with fused multiply-and-add instructions.
These instructions can improve the throughput significantly.

; Example 12.6g. Loop of DAXPY for processors with FMA4

.code
mov eax, -n * 8 ; Index = -n * sizeof (double)
lea rsi, [X + 8 * n] ; Point to end of array X (aligned)
lea rdi, [Y + 8 * n] ; Point to end of array Y (aligned)
vmovddup xmmZ2, [DA] ; Load DA x 2
align 32

Ll: vmovapd xmml, [rsitrax] ;o X[i]
vinmaddpd xmml, xmml, xmm2, [rdi+rax] ; Y[i]-X[i]*DA
vmovapd [rdi+rax], xmml ; Store
add rax, 16 ; Add size of two elements to index
31 L1 ; Loop back

This loop is not limited by the execution units but by memory access. Unfortunately, cache
bank conflicts are very frequent on the Bulldozer. This increases the time consumption from
the theoretical 2 clock cycles per iteration to almost 4. There is no advantage in using the
bigger YMM registers on the Bulldozer. On the contrary, the decoding of the YMM double
instructions is somewhat less efficient.

12.11 Same example with FMA3

The Intel Haswell processor supports the 3-operand form of fused multiply-and-add
instructions called FMA3. AMD Piledriver supports both FMA3 and FMA4.

; Example 12.6h. Loop of DAXPY with FMA3, using xmm registers

.code
mov eax, -n * 8 ; Index = -n * sizeof (double)
lea rsi, [X + 8 * n] Point to end of array X (aligned)

Ne Ne Ne o N

lea rdi, [Y + 8 * n] Point to end of array Y (aligned)
vmovddup xmm2, [DA] Load DA x 2
align 32
Ll: vmovapd xmml, [rditrax] ;Y [i]
vinmadd23lpd xmml, xmm2, [rsit+rax] ; Y[i]-X[1i]*DA
vmovapd [rdit+rax], xmml ; Store
add rax, 16 ; Add size of two elements to index
J1 L1 ; Loop back

This loop takes 1 - 2 clock cycles per iteration on Intel processors. The throughput can be
almost doubled by using the YMM registers:

; Example 12.6i. Loop of DAXPY with FMA3, using ymm registers
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.code

mov eax, -n * 8 ; Index = -n * sizeof (double)
lea rsi, [X + 8 * n] ; Point to end of array X
lea rdi, [Y + 8 * n] ; Point to end of array Y
vbroadcastsd xmm2, [DA] ; Load DA x 4
align 32
Ll: vmovupd ymml, [rsitrax] ;o X[i]
vfnmadd23lpd ymml, ymm2, [rdi+rax] ; Y[1i]-X[1]*DA
vmovupd [rdi+rax], ymml ; Store
add rax, 32 ; Add size of two elements to index
J1 L1 ; Loop back

Example 12.6i does not assume that the arrays are aligned by 32. Therefore, vmovaprDp has
been changed to vmovurD. The execution time for this loop has been measured to 2 clock
cycles on Haswell and Broadwell, and 1.5 clock cycles on Skylake. The bottleneck is not
execution units here, but cache effects and perhaps the branch instruction.

12.12 Loop unrolling

A loop that does n repetitions can be replaced by a loop that repeats n/ r times and does r
calculations for each repetition, where r is the unroll factor. n should preferably be divisible
by r.

Loop unrolling can be used for the following purposes:

¢ Reducing loop overhead. The loop overhead per calculation is divided by the loop
unroll factor r. This is only useful if the loop overhead contributes significantly to the
calculation time. There is no reason to unroll a loop if some other bottleneck limits
the execution speed. For example, the loop in example 12.6e above cannot benefit
from further unrolling.

e Vectorization. A loop must be rolled out by r or a multiple of r in order to use vector
registers with r elements. The loop in example 12.6¢ is rolled out by 2 in order to use
vectors of two double-precision numbers. If we had used single-precision numbers
then we would have rolled out the loop by 4 and used vectors of 4 elements.

¢ Improve branch prediction. The prediction of the loop exit branch can be improved
by unrolling the loop so much that the repeat count n/ r does not exceed the
maximum repeat count that can be predicted on a specific CPU.

e Improve caching. If the loop suffers from many data cache misses or cache
contentions then it may be advantageous to schedule memory reads and writes in
the way that is optimal for a specific processor. This is rarely needed on modern
processors. See the optimization manual from the microprocessor vendor for details.

e Eliminate integer divisions. If the loop contains an expression where the loop counter
i is divided by an integer r or the modulo of i by r is calculated, then the integer
division can be avoided by unrolling the loop by r.

e Eliminate branch inside loop. If there is a branch or a switch statement inside the
loop with a repetitive pattern of period r then this can be eliminated by unrolling the
loop by r. For example, if an if-else branch goes either way every second time then
this branch can be eliminated by rolling out by 2.

e Break loop-carried dependency chain. A loop-carried dependency chain can in some
cases be broken up by using multiple accumulators. The unroll factor r is equal to
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the number of accumulators. See example 9.3b page 65.

e Reduce dependence of induction variable. If the latency of calculating an induction
variable from the value in the previous iteration is so long that it becomes a
bottleneck then it may be possible to solve this problem by unrolling by r and
calculate each value of the induction variable from the value that is r places behind
in the sequence.

e Complete unrolling. A loop is completely unrolled when r = n. This eliminates the
loop overhead completely. Every expression that is a function of the loop counter
can be replaced by constants. Every branch that depends only on the loop counter
can be eliminated. See page 114 for examples.

There is a problem with loop unrolling when the repeat count n is not divisible by the unroll
factor r. There will be a remainder of n modulo r extra calculations that are not done inside
the loop. These extra calculations have to be done either before or after the main loop.

It can be quite tricky to get the extra calculations right when the repeat count is not divisible
by the unroll factor; and it gets particularly tricky if we are using a negative index as in
example 12.6d and e. The following example shows the DAXPY algorithm again, this time
with single precision and unrolled by 4. In this example n is a variable which may or may not
be divisible by 4. The arrays x and vy must be aligned by 16. (The optimization that was
specific to the PM processor has been omitted for the sake of clarity).

; Example 12.7. Unrolled Loop of DAXPY, single precision.

.data
align 16
SignBit$S DD 80000000H ; dword with sign bit set
.code
mov eax, n ; Number of calculations, n
sub eax, 4 ; n - 4
lea esi, [X + eax*4] ; Point to X[n-4]
lea edi, [Y + eax*4] ; Point to Y[n-4]
movss xmmZ2, DA ; Load DA
xorps xmm2, SignBitS ; Change sign
shufps xmm2, xmm2, O ; Get -DA into all four dwords of xmm?2
neg eax ; —(n-4)
Jjg L2 ; Skip main loop if n < 4
Ll: ; Main loop rolled out by 4
movaps xmml, [esiteax*4] ; Load 4 values from X
mulps xmml, xmm2 ; Multiply with -DA
addps xmml, [editeax*4] ; Add 4 values from Y
movaps [editeax*4],xmml ; Store 4 results in Y
add eax, 4 ;1 4= 4
jle Ll ; Loop as long as <= 0
L2: ; Check for remaining calculations
sub eax, 4 ; = —remainder
Jns L4 ; Skip extra loop if remainder = 0
L3: ; Extra loop for up to 3 remaining calculations
movss xmml, [esiteax*4+16] ; Load 1 value from X
mulss xmml, xmm2 ; Multiply with -DA
addss =xmml, [edi+eax*4+16] ; Add 1 value from Y
movss [edi+eax*4+16],xmml ; Store 1 result in Y
add eax, 1 ;1 +=1
Js L3 ; Loop as long as negative
L4:
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An alternative solution for an unrolled loop that does calculations on arrays is to extend the
arrays with up to r-1 unused spaces and rounding up the repeat count n to the nearest
multiple of the unroll factor r. This eliminates the need for calculating the remainder (n mod
r) and for the extra loop for the remaining calculations. The unused array elements must be
initialized to zero or some other valid floating point value in order to avoid subnormal
numbers, NAN, overflow, underflow, or any other condition that can slow down the floating
point calculations. If the arrays are of integer type then the only condition you have to avoid
is division by zero.

Loop unrolling should only be used when there is a reason to do so and a significant gain in
speed can be obtained. Excessive loop unrolling should be avoided. The disadvantages of
loop unrolling are:

e The code becomes bigger and takes more space in the code cache. This can cause
code cache misses that cost more than what is gained by the unrolling. Note that the
code cache misses are not detected when the loop is tested in isolation.

e Many processors have a loop buffer to increase the speed of very small loops. The
loop buffer is limited to 20 - 40 instructions or 64 bytes of code, depending on the
processor. Loop unrolling is likely to decrease performance if it exceeds the size of
the loop buffer. (Processor-specific details are provided in manual 3: "The
microarchitecture of Intel, AMD and VIA CPUs".)

e Some processors have a pop cache of limited size. This pop cache is so valuable
that its use should be economized. Unrolled loops take up more space in the pop
cache. Note that the pop cache misses are not detected when the loop is tested in
isolation.

¢ The need to do extra calculations outside the unrolled loop in case n is not divisible
by r makes the code more complicated and clumsy and increases the number of
branches.

e The unrolled loop may need more registers, e.g. for multiple accumulators.

12.13 Vector loops using mask registers (AVX512)

The AVX512 instruction set provides masked operations. This feature is useful for masking
off the excess vector elements when the loop count is not divisible by the vector size.

; Example 12.8. Vectorized DAXPY loop using mask registers

.data
align 64
countdown dd 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
sixteen dd 16
.code
lea rsi, [X] ; point to beginning of X
lea rdi, [Y] ; point to beginning of Y
mov edx, n ; number of elements, n
vmovd xmm0O, edx
vpbroadcastd zmm0O, xmmO ; broadcast n
vpaddd zmm0O, zmmO, zmmword [countdown] ; counts = n+countdown
vpbroadcastd zmml, dword [sixteen] ; broadcast 16
vbroadcastss zmm2, dword [DA] ; broadcast DA
XOr eax, eax ; loop counter i = 0
Ll: ; Main loop rolled out by 16
vpcmpnltud k1, zmmO, zmml ; mask k1l = (counts >= 16)
vpsubd zmmO, zmmO, zmml ; counts -= 16
vmovups zmm3 {kl}{z}, zmmword [rdi+trax*4] ; load Y[i]
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vinmadd23lps zmm3 {k1l}, zmm2, zword [rsitrax*4] ; Y[1i]-DA*X[I]

vmovups zmmword [rdi+rax*4] {kl}, zmm3 ; store Y[i]
add rax, 16 ;1 += 16

cmp eax, rdx ; while i < n

ib Ll

Here, the mask in the k1 register has a 1-bit for all valid elements, and O for excess
elements beyond n. The store instruction is masked by k1 to avoid storing anything beyond
the n elements of v. It is good to mask the load and calculation instructions as well, using
the same mask. Here, we have masked the load instruction with zeroing to avoid a false
dependence on the previous value of the vector register. Masking the calculations saves
power and avoids exceptions and penalties for possible subnormal values, etc. There is no
cost to adding a mask to a 512-bit vector instruction.

The instructions that generate the mask do not need to have the same vector size and
granularity as the calculations. For example, if the calculations have double precision (64
bits granularity) then we may generate the needed 8-bit mask from 256-bit registers with 32-
bit granularity, or even 128-bit registers with 16-bit granularity if n is guaranteed to be less
than 2% and AVX512BW is supported.

The X and Y arrays should preferably be aligned by 64 for best performance.

We may use integer instructions instead of vector instructions for making the mask if the
execution unit for vector addition is a bottleneck. This is shown in the next example:

; Example 12.9. Vectorized DAXPY, mask calculated with integer instr.
; Note: This version works only for n < 256!

.code
lea rsi, [X] ; point to beginning of X
lea rdi, [Y] ; point to beginning of Y
vbroadcastss zmm2, dword[DA]; broadcast DA
mov edx, n ; number of elements, n
mov ecx, -1 ; fill with all 1's
XOr eax, eax ; loop counter i = 0

Ll: ; Main loop rolled out by 16
bzhi ecx, ecx, edx ; zero bit positions > edx
kmovw kl, ecx ; copy 16 bits to mask register
vmovups zmm3 {kl}{z}, zmmword [rdit+rax*4] ; load Y[i]
vinmadd23lps zmm3 {kl}, zmm2, zword [rsitrax*4] ; Y[1i]-DA*X[I]
vmovups zmmword [rdit+rax*4] {kl}, zmm3 ; store Y[i]
add rax, 16 ;1 += 16
sub edx, 16 ; count down n
Jja Ll ; repeat if n positive

Example 12.9 counts down the number of remaining elements in edx and uses bzhi to clear
the remaining bits in ecx in the last iteration if edx < 16. The bzhi instruction belongs to the
BMI2 instruction set, which is supported in all known processors with AVX512. Note that this
works only for n < 256 because bzhi reads only the lower 8 bits of edx.

If the iteration count is high and the instructions for calculating the mask are slowing down
the loop execution then it is better to have a main loop without masking and only do the
operations that require masking after the main loop:

; Example 12.10. Vectorized DAXPY, masking only after main loop

.code
lea rsi, [X] ; point to beginning of X
lea rdi, [Y] ; point to beginning of Y
vbroadcastss zmm2, dword[DA]; broadcast DA
mov edx, n ; number of elements, n
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and edx, -16 ; round down n to multiple of 16

lea rsi, [rsi+rdx*4] ; point to the end

lea rdi, [rdi+rdx*4] ; point to the end

neg rdx ; use negative index from the end
Ll: ; Main loop rolled out by 16

vmovups zmm3, zmmword [rdi+rdx*4] ; load Y[i]

vinmadd23lps zmm3, zmm2, zword [rsi+rdx*4] ; Y[i]-DA*X[I]

vmovups zmmword [rdi+rdx*4] {kl}, zmm3 ; store Y[i]

add rdx, 16 ; next 16 elements

Jnz Ll ; count up to zero

mov edx, n ; calculate remaining elements

and edx, 15 ; n modulo 16

Jjz L2 ; optionally skip if zero

mov eax, -1 ; all 1's

bzhi eax, eax, edx ; zero bit positions > edx

kmovw kl, eax ; copy 16 bits to mask register

; rsi and rdi are pointing to where the main loop ended.
; Now do the last 0-15 elements

vmovups zmm3 {kl}{z}, zmmword [rdi] ; load Y[1]
vfnmadd23lps zmm3 {kl}, zmm2, zword [rsi] ; Y[i]-DA*X[I]
vmovups zmmword [rdi] {kl}, zmm3 ; store Y[i]

L2:

Example 12.10 contains the loop body twice. The first body is repeated n/16 times in the L1
loop. The second body calculates the remaining 0-15 elements when n is not divisible by
16. It is not necessary to skip the last body with 5z 1.2 if this branch is poorly predictable.

Example 12.10 has only 5 instructions in the loop body. This will be the fastest solution if the
loop count is high. Example 12.8 and 12.9 are useful if the loop body is so large that we
don't want to include it twice, or if the loop count small, or if the bottleneck is memory
access or a loop-carried dependency chain. Example 12.9 can only be used if n < 256.

12.14 Optimize caching

Memory access is likely to take more time than anything else in a loop that accesses
uncached memory. Data should be held contiguous if possible and accessed sequentially,
as explained in chapter 11 page 82.

The number of arrays accessed in a loop should not exceed the number of read/write
buffers in the microprocessor. One way of reducing the number of data streams is to
combine multiple arrays into an array of structures so that the multiple data streams are
interleaved into a single stream.

Modern microprocessors have advanced data prefetching mechanisms. These mechanisms
can detect regularities in the data access pattern such as accessing data with a particular
stride. It is recommended to take advantage of such prefetching mechanisms by keeping
the number of different data streams at a minimum and keeping the access stride constant if
possible. Automatic data prefetching often works better than explicit data prefetching when
the data access pattern is sufficiently regular.

Explicit prefetching of data with the pre fetch instructions may be necessary in cases where
the data access pattern is too irregular to be predicted by the automatic prefetch
mechanisms. A good deal of experimentation is often needed to find the optimal prefetching
strategy for a program that accesses data in an irregular manner.

It is possible to put the data prefetching into a separate thread if the system has multiple
CPU cores. The Intel C++ compiler has a feature for doing this.
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Data access with a stride that is a high power of 2 is likely to cause cache line contentions.
This can be avoided by changing the stride or by loop blocking. See the chapter on
optimizing memory access in manual 1: "Optimizing software in C++" for details.

The non-temporal write instructions are useful for writing to uncached memory that is
unlikely to be accessed again soon. You may use vector instructions in order to minimize
the number of non-temporal write instructions.

12.15 Parallelization

The most important way of improving the performance of CPU-intensive code is to do things
in parallel. The main methods of doing things in parallel are:

e Improve the possibilities of the CPU to do out-of-order execution. This is done by
breaking long dependency chains (see page 65) and distributing pops evenly
between the different execution units or execution ports (see page 94).

e Use vector instructions. See chapter 13 page 116.
e Use multiple threads. See chapter 14 page 142.

Loop-carried dependency chains can be broken by using multiple accumulators, as
explained on page 65. The optimal number of accumulators if the CPU has nothing else to
do is the latency of the most critical instruction in the dependency chain divided by the
reciprocal throughput for that instruction. For example, the latency of floating point addition
on an AMD processor is 4 clock cycles and the reciprocal throughput is 1. This means that
the optimal number of accumulators is 4. Example 12.11b below shows a loop that adds
numbers with four floating point registers as accumulators.

// Example 12.1la, Loop-carried dependency chain
// (Same as example 9.3a page 65)

double 1ist[100], sum = O0.;
for (int 1 = 0; 1 < 100; i++) sum += list[i];

An implementation with 4 floating point registers as accumulators looks like this:

; Example 12.11b, Four floating point accumulators

lea esi, list ; Pointer to list

fld gword ptr [esi] ; accuml = 1list[0]

fld gword ptr [esi+8] ; accum? = list[1]

fld gword ptr [esi+16] ; accum3 = list[2]

fld gword ptr [esi+24] ; accum4 = list[3]

fxch st (3) ; Get accuml to top

add esi, 800 ; Point to end of list

mov eax, 32-800 ; Index to list[4] from end of list
Ll:

fadd gword ptr [esiteax] ; Add list[i]

fxch st(l) ; Swap accumulators

fadd gword ptr [esiteax+8] ; Add list[i+1]

fxch st (2) ; Swap accumulators

fadd gword ptr [esiteax+l16] ; Add list[i+2]

fxch st (3) ; Swap accumulators

add eax, 24 ;1 4= 3

Jjs Ll ; Loop

faddp st (1), st(0) ; Add two accumulators together

fxch st(l) ; Swap accumulators

faddp st(2), st(0) ; Add the two other accumulators

faddp st (1), st(0) ; Add these sums

fstp qgword ptr [sum] ; Store the result
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In example 12.11b, | have loaded the four accumulators with the first four values from 1ist.
Then the number of additions to do in the loop happens to be divisible by the rollout factor,
which is 3. The funny thing about using floating point registers as accumulators is that the
number of accumulators is equal to the rollout factor plus one. This is a consequence of the
way the fxch instructions are used for swapping the accumulators. You have to play
computer and follow the position of each accumulator on the floating point register stack to
verify that the four accumulators are actually rotated one place after each iteration of the
loop so that each accumulator is used for every fourth addition despite the fact that the loop
is only rolled out by three.

The loop in example 12.11b takes 1 clock cycle per addition, which is the maximum
throughput of the floating point adder. The latency of 4 clock cycles for floating point
addition is taken care of by using four accumulators. The fxch instructions have zero
latency because they are translated to register renaming on most Intel, AMD and VIA
processors (except on Intel Atom).

The fxch instructions can be avoided on processors with the SSE2 instruction set by using
XMM registers instead of floating point stack registers as shown in example 12.11c. The
latency of floating point vector addition is 4 on an AMD and the reciprocal throughput is 2 so
the optimal number of accumulators is 2 vector registers.

; Example 12.11c, Two XMM vector accumulators

lea esi, 1list ; list must be aligned by 16

movapd xmm0O, [esi] ; list[0], list[1]

movapd xmml, [esi+16] ; list[2], list[3]

add esi, 800 ; Point to end of list

mov eax, 32-800 ; Index to list[4] from end of list
Ll:

addpd xmm0, [esiteax] ; Add list[i], list[i+1]

addpd xmml, [esi+eax+16] ; Add list[i+2], list[i+3]

add eax, 32 ;1 += 4

Js Ll ; Loop

addpd xmm0, xmml
movhlps xmml, xmmO
addsd xmmQ, xmml
movsd [sum], xmmO

Add the two accumulators together
There is no movhlpd instruction
Add the two vector elements

Store the result

’
’
’
’

Example 12.11b and 12.11c are exactly equally fast on an AMD processor because both
are limited by the throughput of the floating point adder.

Example 12.11c is faster than 12.11b on an Intel Core2 processor because this processor
has a 128 bits wide floating point adder that can handle a whole vector in one operation.

12.16 Analyzing dependences

A loop may have several interlocked dependency chains. Such complex cases require a
careful analysis.

The next example is a Taylor expansion. As you probably know, many functions can be
approximated by a Taylor polynomial of the form

f(x)zznlcixi

Each power X' is conveniently calculated by multiplying the preceding power x"! with x. The
coefficients c; are stored in a table.

; Example 12.12a. Taylor expansion
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.data

align 16
one dg 1.0 ; 1.0
X dqg ? ;X
coeff dg cO0, cl, c2, ... ; Taylor coefficients
coeff end label gword ; end of coeff. list
.code
movsd xmm2, [x] ; Xmm2 = X
movsd xmml, [one] ;o xmml = x°1
xorps xmmO, xmmO ; xmm0 = sum. init. to O
mov eax, offset coeff ; point to cli]
Ll: movsd xmm3, [eax] ; cl[i]
mulsd xmm3, xmml ; cl[i] * x71
mulsd xmml, xmm2 ;o ox”N(1+1)
addsd xmmO, =xmm3 ; sum += c[i] * x"i
add eax, 8 ; point to c[i+1]
cmp eax, offset coeff end ; stop at end of list
Jb Ll ; loop

(If your assembler confuses the movsd instruction with the string instruction of the same
name, then code itas pB 0F2H / movups).

And now to the analysis. The list of coefficients is so short that we can expect it to stay
cached.

In order to check whether latencies are important, we have to look at the dependences in
this code. The dependences are shown in figure 12.1.
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Figure 12.1: Dependences in Taylor expansion of example 12.12.

There are two continued dependency chains, one for calculating x' and one for calculating
the sum. The latency of the mu1sd instruction is longer than the addsd on Intel processors.
The vertical multiplication chain is therefore more critical than the addition chain. The
additions have to wait for cix', which come one multiplication latency after x', and later than
the preceding additions. If nothing else limits the performance, then we can expect this code
to take one multiplication latency per iteration, which is 4 - 7 clock cycles, depending on the
processor.

Throughput is not a limiting factor because the throughput of the multiplication unit is one
multiplication per clock cycle on processors with a 128 bit execution unit.

Measuring the time of example 12.12a, we find that the loop takes at least one clock cycle
more than the multiplication latency. The explanation is as follows: Both multiplications have
to wait for the value of X! in xmm1 from the preceding iteration. Thus, both multiplications are
ready to start at the same time. We would like the vertical multiplication in the ladder of
figure 12.1 to start first, because it is part of the most critical dependency chain. But the
microprocessor sees no reason to swap the order of the two multiplications, so the
horizontal multiplication on figure 12.1 starts first. The vertical multiplication is delayed for
one clock cycles, which is the reciprocal throughput of the floating point multiplication unit.
The problem can be solved by putting the horizontal multiplication in figure 12.1 after the
vertical multiplication:

; Example 12.12b. Taylor expansion

movsd xmm2, [x] ; xmm2 = X
movsd xmml, [one] ;o xmml = x°1
xorps xmm0O, xmmO ; xmm0O = sum. initialize to O
mov eax, offset coeff ; point to cli]
Ll: movapd xmm3, xmml ; copy x"1i
mulsd xmml, xmm2 ;X2 (1+1) (vertical multipl.)
mulsd xmm3, [eax] ; cli]*x"1 (horizontal multipl.)
add eax, 8 ; point to cl[i+1]
cmp eax, offset coeff end ; stop at end of list
addsd xmmO, xmm3 ; sum += c[i] * x"i
Jb Ll ; loop

Here we need an extra instruction for copying X' (movapd =mm3, xmm1) SO that we can make
the vertical multiplication before the horizontal multiplication. This makes the execution one
clock cycle faster per iteration of the loop.

We are still using only the lower part of the xmm registers. There is more to gain by doing two
multiplications simultaneously and taking two steps in the Taylor expansion at a time. The
trick is to calculate each value of x' from x2 by multiplying with x2:

; Example 12.12c. Taylor expansion, double steps

movsd xmmé, [x] ; X
mulsd xmm4, xmmé ; xX"N2
movlhps xmmé4, xmm4 ; xX"N2, x°2
movapd xmml, xmmword ptr [one] ; xmml (L)=1.0, xmml (H)=x
XOrps xmm0, xmmO ; xmmO = sum. init. to O
mov eax, offset coeff ; point to cli]
Ll: movapd xmm3, xmml ; copy x7i, x”(i+1)
mulpd xmml, xmmé ;XM (142), XN (1+3)
mulpd xmm3, [eax] ;o clil*x™1, cl[i+1]1*x”(1+1)
addpd xmm0, xmm3 ; osum += c[i] * x™i
add eax, 16 ; point to cl[i+2]
cmp eax, offset coeff end ; stop at end of list
Jb Ll ; loop
haddpd xmmO, xmmO ; Join the two parts of sum
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The speed is now doubled. The loop still takes the multiplication latency per iteration, but
the number of iterations is halved. The multiplication latency is 4-5 clock cycles depending
on the processor. Doing two vector multiplies per iteration, we are using only 40 or 50% of
the maximum multiplier throughput. This means that there is more to gain by further
parallelization. We can do this by taking four Taylor steps at a time and calculating each
value of x' from x* by multiplying with x*:

; Example 12.12d.

Taylor expansion, quadruple steps

movsd xmmé, [x] ; X

mulsd xmm4, xmmé 5 xX"2

movlhps xmm4, xmm4 ; xX"N2, xX1N2

movapd xmm2, xmmword ptr [one] ;o xmm2 (L)=1.0, xmm2 (H)=x
movapd xmml, xmm2 ;o xmml = 1, x

mulpd xmm2, xmmé ;o xmm2 = x"2, x"3

mulpd xmm4, xmmé ; xmmd = x74, x™4

XOrps xmmb5, xmmb ; xmm5 = sum. init. to O
XOrps xmmé6, xmmbé ; xmm6 = sum. init. to O
mov eax, offset coeff ; point to cli]

Ll: movapd xmm3, xmml ; copy xMi, x”(i+1)
movapd xmmO, xmm2 ; copy XM (i+2), x*(i+3)
mulpd xmml, xmmé ;o XN (1i+4), x”(1+5)
mulpd xmm2, xmmé ; XN (i+6), x”(1i+7)
mulpd xmm3, xmmword ptr [eax] ; term(i), term(i+1)
mulpd xmm0, xmmword ptr [eax+16] ; term(i+2), term(i+3)
addpd xmmb5, xmm3 ; add to sum
addpd xmm6, xmmO ; add to sum
add eax, 32 ; point to cl[i+2]
cmp eax, offset coeff end ; stop at end of list
Jb Ll ; loop
addpd xmmb5, xmm6 ; jJoin two accumulators
haddpd xmm5, xmmb5 ; final sum in xmmb5

We are using two registers, xmm1 and xmm2, for keeping four consecutive powers of x in
example 12.12d in order to split the vertical dependency chain in figure 12.1 into four
parallel chains. Each power X' is calculated from x*. Similarly, we are using two
accumulators for the sum, xmm5 and xmmé6 in order to split the addition chain into four parallel
chains. The four sums are added together after the loop. A measurement on a Core 2
shows 5.04 clock cycles per iteration or 1.26 clock cycle per Taylor term for example
12.12d. This is close to the expectation of 5 clock cycles per iteration as determined by the
multiplication latency. This solution uses 80% of the maximum throughput of the multiplier
which is a very satisfactory result. There is hardly anything to gain by unrolling further. The
vector addition and other instructions do not add to the execution time because they do not
need to use the same execution units as the multiplications. Instruction fetch and decoding
is not a bottleneck in this case.

The throughput can be improved further on processors supporting the AVX instruction set
with 256-bit YMM registers:

; Example 12.12e.
vmovddup xmm?2,

Taylor expansion using AVX
[x] ;

vmulpd xmm5, xmm2, xmm2 ; xX"N2, X2

vmulpd xmmé4, xmmb5, xmmb ;o x™M, x4

vmovsd xmm2, [one] ;1

vmovhpd xmm2, xmm2, [x] ; 01, x

vmulpd xmmO, xmm2, xmmb ; x72, x"3
vinsertfl1l28 ymm2, ymm2, xmmO, 1 ; 1, x, x"2, x"3
vinsertfl28 ymm4, ymm4, xmm4, 1 ; x"4, x*4, x*4, x"4
vmulpd ymm3, ymm2, ymmé ;o x™M, x°5, x°6, x77
vmulpd ymmé4, ymmé4, ymmé ; x°8, x"8, x"8, x"8
vxorps xmmO, xmmO ; sum0 = 0

vxorps xmml, xmml ; suml = 0
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lea rax, [coeff end] ; point to end of coeff[i]

mov rcx, —-n ; counter
Jmp L2 ; Jump into loop
align 32 loop

Ll: vmulpd ymm2, ymm2, ymmé4
vmulpd ymm3, ymm3, ymmé

multiply powers of x by x"8
multiply powers of x by x"8

L2: vmulpd ymm5, ymm2, [raxtrcx] first four terms
vaddpd ymmO, ymmO, ymmS ; sumO
vmulpd ymm5, ymm3, [rax+rcx+32] ; next four terms
vaddpd ymml, ymml, ymmb ; suml
add rcx, 64
J1 L1

; make total sum

vaddpd ymmO, ymmO, ymml ; Jjoin two accumulators
vextractfl28 xmmb5, ymmO, 1 ; get high part

vaddpd xmm0O, xmm0O, xmmb ; add high and low part

vhaddpd xmm0O, xmm0O, xmmO ; final sum in xmmO

vzeroupper ; 1f subsequent code is non-VEX

Example 12.12e calculates 8 terms for each iteration. The execution time was measured to
5.5 clock cycles per iteration on a Sandy Bridge, which is close to the theoretical minimum
of 5 clock cycles as determined by the multiplication latency of 5 clocks. The measured
execution time on Skylake is approximately the same even though the multiplication latency
is only 4 clock cycles on this processor.

The time spent outside the loop is of course higher in example 12.12d and 12.12e than in
the previous examples, but the performance gain is still very significant even for a small
number of iterations. A little final twist is to put the first coefficient into the accumulator
before the loop and start with x* rather than x°. A better precision is obtained by adding the
first term last, but at the cost of an extra addition latency.

The code in example 12.12e can be further improved by using fused multiply-and-add
instructions (FMA3 or FMA4) inside the loop if these instructions are supported. The
measured execution time on Skylake is reduced from 5.4 to 4.5 clock cycles when FMA
instructions are used.

To conclude, the vertical multiplication should be done before the horizontal multiplication.
The optimal number of accumulator registers is the value that makes use of the maximum
possible throughput of the execution units if the loop iteration count is high. If the loop
iteration count is so low that the setup time before the loop and the additions after the loop
also matter, then the optimal number of accumulator registers may be somewhat smaller.

It is common to stop a Taylor expansion when the terms become negligible. However, it
may be better to always include the worst case maximum number of terms in order to avoid
the floating point comparisons needed for checking the stop condition. A constant repetition
count will also prevent misprediction of the loop exit. The cost of calculating more terms
than needed is actually quite small in the optimized examples that use possibly less than
one clock cycle per term.

Remember to set the mxcsr register to "Flush to zero" mode in order to avoid the possible
penalty of underflows when doing more iterations than necessary.

12.17 Loops on processors without out-of-order execution

The P1 and PMMX processors have no capabilities for out-of-order execution. These
processors are of course obsolete today, but the principles described here may be applied
to smaller embedded processors.
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| have chosen the simple example of a procedure that reads integers from an array,
changes the sign of each integer, and stores the results in another array. A C++ language
code for this procedure would be:

// Example 12.13a. Loop to change sign
void ChangeSign (int * A, int * B, int N) {
for (int 1 = 0; 1 < N; 1i++) B[1] = -A[1];
}
An assembly implementation optimized for P1 may look like this:

; Example 12.13b

mov esi, [A]
mov eax, [N]
mov edi, [B]
XOr ecx, ecx
lea esi, [esi+d*eax] ; point to end of array a
sub ecx, eax ; -n
lea edi, [edit+td*eax] ; point to end of array b
Jjz short L3
XOor ebx, ebx ; start first calculation
mov eax, [esi+d*ecx]
inc ecx
Jjz short L2

Ll: sub ebx, eax ;u
mov eax, [esi+d*ecx] ; v (pairs)
mov [edi+d*ecx-4], ebx ; u
inc ecx ; v (pairs)
mov ebx, 0 ;u
jnz L1 ; v (pairs)

L2: sub ebx, eax ; end last calculation
mov [edi+d*ecx-4], ebx

L3:

Here the iterations are overlapped in order to improve pairing opportunities. We begin
reading the second value before we have stored the first one. The mov ebx, 0 instruction
has been put in between inc ecx and jnz L1, nottoimprove pairing, but to avoid the
AGI stall that would result from using ecx as address index in the first instruction pair after it
has been incremented.

Loops with floating point operations are somewhat different because the floating point
instructions are pipelined and overlapping rather than pairing. Consider the DAXPY loop of
example 12.6 page 95. An optimal solution for P1 is as follows:

; Example 12.14. DAXPY optimized for Pl and PMMX

mov eax, [n] ; number of elements
mov esi, [X] ; pointer to X
mov edi, [Y] ; pointer to Y
XOr ecx, ecx
lea esi, [esi+8*eax] ; point to end of X
sub ecx, eax ; —n
lea edi, [edi+8*eax] ; point to end of Y
Jjz short L3 ; test for n = 0
fld gword ptr [DA] ; start first calc.
fmul qgword ptr [esi+8*ecx] ; DA * X[0]
Jmp short L2 ; jJump into loop

Ll: fld gword ptr [DA]
fmul gword ptr [esit+8*ecx] ; DA * X[i]
fxch ; get old result
fstp gword ptr [edi+8*ecx-8] ; store Y[i]

L2: fsubr gword ptr [edi+8*ecx] ; subtract from Y [i]
inc ecx ; increment index
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Jnz Ll ; loop
fstp agword ptr [edi+8*ecx-8] ; store last result
L3:

Here we are using the loop counter as array index and counting through negative values up
to zero.

Each operation begins before the previous one is finished, in order to improve calculation
overlaps. Processors with out-of-order execution will do this automatically, but for
processors with no out-of-order capabilities we have to do this overlapping explicitly.

The interleaving of floating point operations works perfectly here: The 2 clock stall between
FMUL and rsuBR is filled with the rsTp of the previous result. The 3 clock stall between
FsUBR and rFsTP is filled with the loop overhead and the first two instructions of the next
operation. An address generation interlock (AGI) stall has been avoided by reading the only
parameter that doesn't depend on the index counter in the first clock cycle after the index
has been incremented.

This solution takes 6 clock cycles per iteration, which is better than unrolled solutions
published elsewhere.

12.18 Macro loops

If the repetition count for a loop is small and constant, then it is possible to unroll the loop
completely. The advantage of this is that calculations that depend only on the loop counter
can be done at assembly time rather than at execution time. The disadvantage is, of course,
that it takes up more space in the code cache if the repeat count is high.

The MASM syntax includes a powerful macro language with full support of meta-
programming, which can be quite useful. Other assemblers have similar capabilities, but the
syntax is different.

If, for example, we need a list of square numbers, then the C++ code may look like this:
// Example 12.15a. Loop to make list of squares
int squares[10];
for (int i = 0; 1 < 10; 1i++4) squares[i] = i*i;

The same list can be generated by a macro loop in MASM language:

; Example 12.15b. Macro loop to produce data

.DATA
squares LABEL DWORD ; label at start of array
I =20 ; temporary counter
REPT 10 ; repeat 10 times
DD I * I ; define one array element
I=1+1 ; lncrement counter
ENDM ; end of REPT loop

Here, 1 is a preprocessing variable. The 1 loop is run at assembly time, not at execution
time. The variable 1 and the statement 1 = T + 1 never make it into the final code, and
hence take no time to execute. In fact, example 12.15b generates no executable code, only
data. The macro preprocessor will translate the above code to:

; Example 12.15c. Resuls of macro loop expansion

squares LABEL DWORD ; label at start of array
DD O
DD 1
DD 4
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DD 9

DD 16
DD 25
DD 36
DD 49
DD 64
DD 81

Macro loops are also useful for generating code. The next example calculates x", where X is
a floating point number and n is a positive integer. This is done most efficiently by
repeatedly squaring x and multiplying together the factors that correspond to the binary
digits in n. The algorithm can be expressed by the C++ code:

// Example 12.16a. Calculate pow(x,n) where n is a positive integer
double x, xp, power;
unsigned int n, i;

Xxp = x; power = 1.0;

for (i = n; i !'= 0; 1 >>= 1) {
if (1 & 1) power *= xp;
Xp *= Xp;

If n is known at assembly time, then the power function can be implemented using the
following macro loop:

; Example 12.16Db.

; This macro will raise a double-precision float in X

; to the power of N, where N is a positive integer constant.
; The result is returned in Y. X and Y must be two different
; XMM registers. X is not preserved.

; (Only for processors with SSE2)

INTPOWER MACRO X, Y, N

LOCAL I, YUSED ; define local identifiers
I =N ; I used for shifting N
YUSED = 0 ; remember if Y contains valid data
REPT 32 ; maximum repeat count is 32
IF I AND 1 ; test bit O
IF YUSED ; If Y already contains data
mulsd Y, X ; multiply Y with a power of X
ELSE ; If this is first time Y is used:
movsd Y, X ; copy data to Y
YUSED = 1 ; remember that Y now contains data
ENDIF ; end of IF YUSED
ENDIF ; end of IF I AND 1
I =1 SHR 1 ; shift right I one place
IF I EQ O ; stop when I = 0
EXITM ; exit REPT 32 loop prematurely
ENDIF ; end of IF I EQ O
mulsd X, X ; square X
ENDM ; end of REPT 32 loop
ENDM ; end of INTPOWER macro definition

This macro generates the minimum number of instructions needed to do the job. There is no
loop overhead, prolog or epilog in the final code. And, most importantly, no branches. All
branches have been resolved by the macro preprocessor. To calculate xmm0 to the power of
12, you write:

; Example 12.16c. Macro invocation
INTPOWER xmmO, xmml, 12

This will be expanded to:
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; Example 12.16d. Result of macro expansion

mulsd xmm0, xmmO ; x"2

mulsd xmm0, xmmO ;o x™M4

movsd xmml, xmmO ; save x"4

mulsd xmmO, xmmO ; x°8

mulsd xmml, xmmO ;o xM o F x78 = xM12

This even has fewer instructions than an optimized assembly loop without unrolling. The
macro can also work on vectors when mulsd is replaced by mulpd and movsd is replaced by

movapd.

13 Vector programming

Since there are technological limits to the maximum clock frequency of microprocessors, the
trend goes towards increasing processor throughput by handling multiple data in parallel.

When optimizing code, it is important to consider if there are data that can be handled in
parallel. The principle of Single-Instruction-Multiple-Data (SIMD) programming is that a
vector or set of data are packed together in one large register and handled together in one
operation. There are many hundred different SIMD instructions available. These instructions
are listed in "Intel 64 and IA-32 Architectures Software Developer's Manual” and in "AMD64
Architecture Programmer’s Manual".

Multiple data can be packed into 64-bit MMX registers, 128-bit XMM registers, 256-bit YMM
registers, or 512-bit ZMM registers in the following ways:

data type data per pack register size instruction set
8 bit integer 8 64 bit (MMX) MMX
16 bit integer 4 64 bit (MMX) MMX
32 bit integer 2 64 bit (MMX) MMX
64 bit integer 1 64 bit (MMX) SSE2
32 bit float 2 64 bit (MMX) 3DNow (obsolete)
8 bit integer 16 128 bit (XMM) SSE2
16 bit integer 8 128 bit (XMM) SSE2
32 bit integer 4 128 bit (XMM) SSE2
64 bit integer 2 128 bit (XMM) SSE2
32 bit float 4 128 bit (XMM) SSE
64 bit float 2 128 bit (XMM) SSE2
8 bit integer 32 256 bit (YMM) AVX2
16 bit integer 16 256 bit (YMM) AVX2
32 bit integer 8 256 bit (YMM) AVX2
64 bit integer 4 256 bit (YMM) AVX2
32 bit float 8 256 bit (YMM) AVX
64 bit float 4 256 bit (YMM) AVX
8 bit integer 64 512 bit (ZMM) AVX-512BW
16 bit integer 32 512 bit (ZMM) AVX-512BW
32 bit integer 16 512 bit (ZMM) AVX-512
64 bit integer 8 512 bit (ZMM) AVX-512
32 bit float 16 512 bit (ZMM) AVX-512
64 bit float 8 512 bit (ZMM) AVX-512
Table 13.1. Vector types

Whether the different instruction sets are supported on a particular microprocessor can be
determined with the cru1D instruction, as explained on page 143. The 64-bit MMX registers
cannot be used together with the x87 style floating point registers. The vector registers can
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only be used if supported by the operating system. See page 144 for how to check if the use
of vector registers is enabled by the operating system.

It is advantageous to choose the smallest data size that fits the purpose in order to pack as
many data as possible into one vector register. Mathematical computations may require
double precision (64-bit) floats in order to avoid loss of precision in the intermediate
calculations, even if single precision is sufficient for the final result.

Before you choose to use vector instructions, you have to consider whether the resulting
code will be faster than the simple instructions without vectors. With vector code, you
sometimes spend more instructions on trivial things such as moving data into the right
positions in the registers and emulating conditional moves, than on the actual calculations.
Example 13.9 below is an example of this. Vector instructions are relatively slow on older
processors, but many newer processors can do a vector calculation just as fast as a scalar
(single) calculation in many cases.

For floating point calculations, it is preferred to use vector registers rather than x87
registers, even if there are no opportunities for handling data in parallel. The vector registers
are handled in a more straightforward way than the old x87 register stack, and some CPUs
have poor performance for x87 instructions.

Memory operands for XMM instructions without VEX prefix have to be aligned by 16.
Memory operands for YMM instructions are preferably aligned by 32 and ZMM by 64, but
this is not necessary. See page 86 for how to align data in memory.

Most common arithmetic and logical operations can be performed in vector registers. The
following example illustrates the addition of two arrays:

Example 13.la. Adding two arrays using vectors
float a[l1l28], b[128], c[128];

Ne Ne Ne N

for (int 1 = 0; 1 < 128; i++) al[i] = bl[i] + c[i];

a, b and c are preferably aligned by 64
XOor ecx, ecx ; Loop counter i = 0

L: vmovups zmm0O, [b+rcx] ; Load 16 elements from b

vaddps zmmO, zmmO, [ctrcx]; Add 16 elements from c
vmovups [atrcx], zmmO ; Store 16 results in a
add ecx, 64 ; 16 elements * 4 bytes = 64
cmp ecx, 512 ; 128 elements * 4 bytes = 512
Jjb L ; Loop

There are no instructions for integer division. Integer division by a constant divisor can be
implemented as multiplication and shift, using the method described on page 148 or the
functions in the vector class library at http://www.agner.org/optimize/#vectorclass or the
assembly library at www.agner.org/optimize/asmlib.zip.

13.1 Using AVX instruction set and YMM or ZMM registers

The 128-bit XMM registers are extended to 256-bit YMM registers and 512-bit ZMM
registers when the various AVX instruction set extensions are available. Further extensions
to 1024 bits and perhaps 2048 bits are possible in the future.

There are 16 YMM registers or 32 ZMM registers in 64-bit mode. There are only 8
XMM/YMM/ZMM registers in 32-bit mode.

Most AVX instructions allow three operands: one destination and two source operands. This
has the advantage that no input register is overwritten by the result.

All the XMM instructions have two versions in the AVX instruction set. A legacy version
which leaves the upper half (bit 128-511) of the target ZMM register unchanged, and a VEX-
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prefix version which sets the upper bits to zero in order to make the result independent of
the previous value of the upper bits of the target register.

The VEX-prefix version has a V prefix to the name and in most cases three operands:

; Example 13.2. Legacy and VEX versions of the same instruction
addps xmml, xmm2 ; xmml xmml + xmm2
vaddps xmml, xmm2, xmm3 ; xmml xmm2 + xmm3

13.2 Mixing VEX and SSE code

There is a problem if a program contains a mixture of instructions with different vector sizes,
such as SSE instructions with XMM registers and VEX instructions with YMM or ZMM
registers.

Mixing YMM or ZMM instructions with legacy 128-bit instructions without VEX prefix will
cause some Intel processors to switch the register file between different states which will
cost many clock cycles.

The following applies to Intel Sandy Bridge, Ivy Bridge, Haswell, and Broadwell processors.
These processors have YMM registers but not ZMM registers.

For the sake of compatibility with legacy SSE code, the register set has three different
states on Sandy Bridge, Ivy Bridge, Haswell, and Broadwell processors:

A. (Clean state). The upper bits of all YMM registers are unused and known to be zero.

B. (Modified state). Bits 128-255 of at least one YMM register are used and contain
data.

C. (Saved state). All YMM registers are split in two. The lower half is used by legacy
SSE instructions which leave the upper part unchanged. All the upper-part halves
are stored in a scratchpad. The two parts of each register will be joined together
again if needed by a transition to state B.

Two instructions are available for the sake of fast transition between these states. vZEROALL
which sets all YMM registers to zero, and vZEROUPPER Which sets the upper half of all YMM
registers to zero. Both instructions leave the processor in state A. The state transitions can
be illustrated by the following state transition table:

Current state » A B C
Instruction 4

VZEROALL / UPPER A A A
XMM A C C
VEX XMM A B B
VEX YMM B B B
Table 13.2. YMM state transitions

State A is the neutral initial state. State B is needed when the full YMM registers are used.
State C is needed for making legacy XMM code fast and free of false dependences when
called from state B. A transition from state B to C is costly because all YMM registers must
be split in two halves which are stored separately. A transition from state C to B is equally
costly because all the registers have to be merged together again. A transition from state C
to A is also costly because the scratchpad containing the upper part of the registers does
not support out-of-order access and must be protected from speculative execution in
possibly mispredicted branches. The transitions B - C, C — B and C — A are very time
consuming on these Intel processors because they have to wait for all registers to retire.
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Transitions A — B and B — A are fast, taking at most one clock cycle. C should be regarded
as an undesired state, and the transition A — C is not possible. The undesired transitions
take approximately 70 clock cycles on Intel Sandy Bridge, vy Bridge, Haswell, and
Broadwell processors according to my measurements.

The following examples illustrate the state transitions:

; Example 13.3a. Transition between YMM states

vaddps ymmO, ymml, ymm2 ; State B
addss xmm3, xmmé ; State C
vmulps ymmO, ymmO, ymmb5 ; State B

Example 13.3a has two expensive state transitions, from B to C, and back to state B. The
state transition can be avoided by replacing the legacy Appss instruction by the VEX-coded
Version VADDSS:

; Example 13.3b. Transition between YMM states avoided

vaddps ymmQO, ymml, ymm2 ; State B
vaddss xmm3, xmm3, xmmé ; State B
vmulps ymmO, ymmO, ymm5 ; State B

This method cannot be used when calling a library function that uses XMM instructions. The
solution here is to save any used YMM registers and go to state A:

; Example 13.3c. Transition to state A

vaddps ymmQO, ymml, ymm2 ; State B

vmovaps [mem], ymmO ; Save ymmO

vzeroupper ; State A

call XMM Function ; Legacy function

vmovaps ymmO, [mem] ; Restore ymmO

vmulps ymmQO, ymmO, ymm5 ; State B

vzeroupper ; Go to state A before returning
ret

XMM Function proc near
addss xmm3, xmmé ; State A
ret

Intel Skylake and later processors behave differently. They have state A and B, but not state
C. This avoids the expensive transitions to and from state C, but gives another problem
instead.

The Skylake processor is unable to split a vector register in two. If a non-VEX instruction
writes to an XMM register while in state B then the instruction will have to wait for the
previous value of this register because it may have to combine the lower part from the non-
VEX instruction with the upper part from a preceding VEX instruction. For example:

; Example 13.4. Mixing VEX and SSE instructions on Skylake

vaddps zmmO, zmml, zmm?2 ; State B

mulps xmm3,  xmmé

movaps [mem], xmm3 ; Save xmm3

movps xmm3, xmmb ; Must wait for mulps

The state does not distinguish between individual registers. The processor treats all
registers as having a dirty upper part when in state B. Therefore, the last instruction must
wait for the result of the preceding multiplication in order to join the two parts of register
zmma3.

The AVX Ryzen processor splits all 256-bit instructions into two 128-bit pops so that these
problems never occur.
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Guidelines for mixing VEX and non-VEX code.

Mixtures of VEX and non-VEX code occur frequently when functions libraries are used. For
example, a program compiled for the AVX512 instruction set may call a library function
compiled for SSE2.

The following guidelines should be followed in order to get optimal performance in programs
that mix SSE and VEX code.

e A function that uses YMM or ZMM instructions should issue a vZEROALL Or
VZEROUPPER before returning if there is a possibility that it might return to SSE code.

e A function that uses YMM or ZMM instructions should save any used YMM or ZMM
register and issue a VZEROALL Or VZEROUPPER before calling any function that might
contain SSE code.

e A function that has a CPU dispatcher for choosing YMM or ZMM code if available
and XMM code otherwise, should issue a VZEROALL Or VZEROUPPER before leaving
the YMM or ZMM part.

This recommendation allows any function to use the largest vector registers available, but a
function that uses YMM or ZMM registers must leave the registers in state A before calling
any function with unknown VEX status and before returning to any function with unknown
VEX status.

Obviously, this does not apply to functions that use YMM or ZMM registers for parameter
transfer or return. A function that uses YMM or ZMM registers for parameter transfer can

assume state B on entry. A function that uses a YMM or ZMM register for the return value
can only be in state B on return. State C should always be avoided.

The vZEROUPPER instruction is faster than vZzEROALL on most processors. Therefore, it is
recommended to use VZEROUPPER rather than vZEROALL unless you want a complete
initialization. vZEROALL cannot be used in 64-bit Windows because the ABI specifies that
registers xvmMe6 - xuM15 have callee-save status. In other words, the calling function can
assume that register xmm6 - xMM1 5, but not the upper parts of the YMM or ZMM registers,
are unchanged after return. No vector registers have callee-save status in 32-bit Windows
or in any Unix system (Linux, BSD, Mac). Therefore it is OK to use vzZEROALL in e.g. Linux.
Obviously, vzerOALL cannot be used if any XMM register contains a function parameter or
return value. vZEROUPPER must be used in these cases.

Unfortunately, the vzerouPPER and VZEROALL instructions are expensive on the Knights
Landing processor (the first processor to support AVX512). It is not recommended to use
these instructions on the Knights Landing. The question on when to use vZzEROUPPER and
when not to use it is discussed at https://software.intel.com/en-us/forums/intel-isa-
extensions/topic/704023.

An alternative solution is to use only ZMM16-ZMM31. These registers are not accessible to
SSE code and they do not affect the state. This may be the optimal solution on processors
that support AVX512, but it cannot be used when YMMO or ZMMO etc. are needed for
function parameters or function return value. Note that vzerourPER and vzEROALL affect
only ZMMO0-ZMM15, not ZMM16-ZMM31.

Mixing VEX and non-VEX instructions is a common error that is very easy to make and very
difficult to detect. The code will still work, but with reduced performance on most Intel
processors. It is strongly recommended that you double-check your code for any mixing of
VEX and non-VEX instructions.
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Warm up time

Many processors are able to turn off the upper bits of the 256 bit or 512 bit execution units
in order to save power when these units are not used.

It takes typically 10-20 us to power up this upper part after an idle period. The throughput of
256-bit vector instructions is much lower during this warm-up period because the processor
uses the lower 128-bit units twice to execute a 256-bit operation. It is possible to make the
256-bit units or 512-bit units warm up in advance by executing a dummy 256 or 512-bit
instruction at a suitable time before the larger unit is needed. The upper part of the 256 or
512-bit units will be turned off again after approximatelyl ms of no large vector instructions.
This phenomenon is described in manual 3: "The microarchitecture of Intel, AMD and VIA
CPUs".

Operating system support

Code that uses YMM or ZMM registers or VEX coded instructions can only run in an
operating system that supports this register size because the operating system must save
the YMM or ZMM registers on task switches.

The following operating system versions support AVX and YMM registers: Windows 7,
Windows server 2008 SP2, Linux kernel version 2.6.30 and later.

The following operating system versions support AVX512 and ZMM registers: Windows 10
and Linux kernel version 3.15.

YMM/ZMM and system code

A situation where transitions between state B and C must take place is when YMM code is
interrupted and the interrupt handler contains legacy XMM code that saves the XMM
registers but not the full YMM registers. In fact, state C was invented exactly for the sake of
preserving the upper part of the YMM registers in this situation.

It is very important to follow certain rules when writing device drivers and other system code
that might be called from interrupt handlers. If any vector register is modified by a VEX
instruction in system code then it is necessary to save the entire register state with xsave
first and restore it with xrREsTOR before returning. It is not sufficient to save the individual
YMM registers because future processors, which may extend the YMM registers further to
512-bit ZMM registers or still larger, will zero-extend the YMM registers to ZMM when
executing YMM instructions and thereby destroy the highest part of the ZMM registers.
XSAVE [ XRESTOR is the only way of saving these registers that is compatible with future
extensions beyond 256 or 512 bits. Future extensions will not use the complicated method
of having two versions of every vector instruction.

If a device driver does not use xsave / xRESTOR then there is a risk that it might
inadvertently use VEX code even if the programmer did not intend this. A compiler that is
not intended for system code may insert implicit calls to library functions such as memset
and memcpy. These functions typically have their own CPU dispatcher which may select the
largest register size available. It is therefore necessary to use a compiler and a function
library that are intended for making system code.

These rules are described in more detail in manual 5: "Calling conventions".

Using non-destructive three-operand instructions

The AVX instruction set which defines the YMM instructions also defines an alternative
encoding of all existing XMM instructions by replacing existing prefixes and escape codes
with the new VEX prefix. The VEX prefix has the further advantage that it defines an extra
register operand. Almost all XMM instructions that previously had two operands now have
three operands when the VEX prefix is used.
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The two-operand version of an instruction typically uses the same register for the
destination and for one of the source operands:

; Example 13.5a. Two-operand instruction
addsd xmmO, xmm2 ; xmm0 = xmm(O + xmm?2

This has the disadvantage that the result overwrites the value of one of the source
operands. The move instruction in example 13.5a can be avoided when the three-operand
version of the addition is used:

; Example 13.5b. Three-operand instruction
vaddsd xmmO, xmml, xmm2 ; xmm0O = xmml + xmm?2

Here none of the source operands are destroyed because the result can be stored in a
different destination register. This can be useful for avoiding register-to-register moves. The
addsd and vaddsd instructions in example 13.5a and 13.5b have exactly the same length.
Therefore there is no penalty for using the three-operand version. The instructions with
names ending in ps (packed single precision) are one byte shorter in the two-operand
version than the three-operand VEX version if the destination register is not xmm8 - xmm15.
The three-operand version is shorter than the two-operand version in a few cases. In most
cases the two- and three-operand versions have the same length.

It is possible to mix two-operand and three-operand instructions in the same code as long
as the register set is in state A. But if the register set happens to be in state C for whatever
reason then the mixing of XMM instructions with and without VEX will cause a costly state
change every time the instruction type changes. It is therefore better to use VEX versions
only or non-VEX only. If YMM or ZMM registers are used (state B) then you should use only
the VEX-prefix version for all XMM instructions until the VEX-section of code is ended with a
VZEROALL OF VZEROUPPER.

The 64-bit MMX instructions and most general purpose register instructions do not have
three operand versions. There is no penalty for mixing MMX and VEX instructions. A few
general purpose register instructions also have three operands.

Unaligned memory access

All VEX coded XMM and YMM instructions with a memory operand allow unaligned memory
access, except for the explicitly aligned instructions vMOvAPS, VMOVAPD, VMOVDQA, VMOVNTPS,
VMOVNTPD, VMVNTDQ. Therefore, it is possible to store YMM and ZMM operands on the stack
without keeping the stack aligned by 32.

Compiler support
The AVX instruction sets are supported by the Microsoft, Intel, Gnu and Clang compilers.

The compilers will use the VEX prefix version for all XMM instructions, including intrinsic
functions, if compiling for an AVX instruction set. It is the responsibility of the programmer to
issue a VZEROUPPER instruction before any transition from a module compiled with AVX to a
module or library compiled without AVX.

Fused multiply-and-add instructions

A fused multiply-and-add (FMA) instruction can make a floating point multiplication followed
by a floating point addition or subtraction in the same time that it otherwise takes to make
only a multiplication. The FMA operation has the form:

d=a*b+c
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There are two different variants of FMA instructions, called FMA3 and FMA4. FMA4
instructions can use four different registers for the operands a, b, ¢ and d. FMA3 instructions
have only three operands, where the destination d must use the same register as one of the
input operands a, b or c. Intel originally designed the FMA4 instruction set, but currently
supports only FMA3. The latest AMD processors support both FMA3 and FMA4 (See
en.wikipedia.org/wiki/EFMA _instruction_set#History).

Examples

Example 12.6f page 100 illustrates the use of the AVX instruction set for a DAXPY
calculation. Example 12.12e page 111 illustrates the use of the AVX instruction set for a
Taylor series expansion. Both examples show the use of three-operand instructions and a
vector size of 256 bits. Example 12.6h and 12.6g show the use of FMA3 and FMA4
instructions, respectively.

13.3 Using AVX512 instruction set and ZMM registers

The vector registers are extended to 512 bits with the AVX512 instruction set. The number
of vector registers is increased to 32 registers in 64-bit mode, while there are only 8 vector
registers in 32-bit mode.

There are 8 new mask registers named kO - k7. The mask registers k1 - k7 can be used for
conditional operations on each vector element as explained on page 126. Conditional
operations are also useful for array loops when the array size is not divisible by the size of
the vector registers. This is explained on page 104.

There are several additional extensions to AVX512. All processors with AVX512 have some
of these extensions, but no processor so far has them all (writing in 2018). The known and
planned extensions to AVX512 are the following:

o AVX512F. Foundation. All AVX512 processors have this. Includes operations on 32-
bit and 64-bit integers, float and double in 512-bit vectors, including masked
operations.

e AVX512VL. Includes the same operations on 128-bit and 256-bit vectors, including
masked operations and 32 vector registers.

e AVX512BW. Operations on 8-bit and 16-bit integers in 512-bit vectors.

o AVX512DQ. Multiplication and conversion instructions with 64-bit integers. Various
other instructions on float and double.

o AVX512ER. Fast reciprocal, reciprocal square root, and exponential function.

Precise on float; approximate on double.

AVX512CD. Conflict detection. Find duplicate elements in a vector.

AVX512PF. Prefetch instructions with gather/scatter logic.

AVX512VBMI. Permutation and shift with 8-bit granularity.

AVX512IFMA. Fused multiply-and-add on 52-bit integers.

AVX512_ 4VNNIW. Iterated dot product on 16-bit integers.

AVX512_ 4FMAPS. Iterated fused multiply-and-add, single precision.

13.4 Conditional moves in xmm and ymm registers
Consider this C++ code which finds the biggest values in four pairs of values:

// Example 13.6a. Loop to find maximums
float afl4], bl4], cl4];
for (int i = 0; 1 < 4; i++) {

cl[i] = ali] > b[i] ? ali] : b[i]l;

}
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If we want to implement this code with XMM registers then we cannot use a conditional
jump for the branch inside the loop because the branch condition is not the same for all four
elements. Fortunately, there is a maximum instruction that does the same:

; Example 13.6b. Maximum in XMM

movaps xmm0, [a] ; Load a vector
maxps xmm0, [b] ; max (a,b)
movaps [c], xmmO ; c=a>b?a:b

Minimum and maximum vector instructions exist for single and double precision floats and
for 8-bit and 16-bit integers. The absolute value of floating point vector elements is
calculated by AND'ing out the sign bit, as shown in example 13.17 page 135. Instructions for
the absolute value of integer vector elements exist in the "Supplementary SSE3" instruction
set. The integer saturated addition vector instructions (e.g. PADDSW) can also be used for
finding maximum or minimum or for limiting values to a specific range.

These methods are not very general, however. The most general way of doing conditional
moves in vector registers is to use Boolean vector instructions. The following example is a
modification of the above example where we cannot use the MAxPs instruction:

// Example 13.7a. Branch in loop
float afl4], bl4]l, cl4], x[4], y[4]:
for (int i = 0; 1 < 4; i++) {

cl[i] = x[1] > y[i] 2 ali] : b[i];
}

The necessary conditional move is done by making a mask that consists of all 1's when the
condition is true and all 0's when the condition is false. a (1] is AND'ed with this mask and
b[i] is AND'ed with the inverted mask:

; Example 13.7b. Conditional move in XMM registers

movaps xmml, [v] ; Load y vector

cmpltps xmml, [x] ; Compare with x. xmml = mask for y < x
movaps xmm0, [a] ; Load a vector

andps xmm0, xmml ; a AND mask

andnps xmml, [b] ; b AND NOT mask

orps xmmQO, xmml ; (a AND mask) OR (b AND NOT mask)
movaps [c], xmmO ; c=x>y ?2a:b

The vectors that make the condition (x and y in example 13.7b) and the vectors that are
selected (a2 and b in example 13.7b) need not be the same type. For example, x and v could
be integers. But they should have the same number of elements per vector. If 2 and b are
double's with two elements per vector, and x and y are 32-bit integers with four elements
per vector, then we have to duplicate each element in x and vy in order to get the right size of
the mask (See example 13.9b below).

Note that the AND-NOT instruction (andnps, andnpd, pandn) inverts the destination
operand, not the source operand. This means that it destroys the mask. Therefore we must
have andps before andnps in example 13.7b. If SSE4.1 is supported then we can use the
BLENDVPS instruction instead:

; Example 13.7c. Conditional move in XMM registers, using SSE4.1

movaps xmm0, [y] ; Load y vector

cmpltps xmmO, [x] ; Compare with x. xmmO = mask for y < x
movaps xmml, [a] ; Load a vector

blendvps xmml, [b], xmmO ; Blend a and b

movaps [c], xmmO ; c=x >y ?2a:b
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If the mask is needed more than once then it may be more efficient to AND the mask with
an XOR combination of a and b. This is illustrated in the next example which makes a

conditional swapping of a and b:

// Example 13.8a.

Conditional swapping in loop

float afl4], bl4], x[4], y[4], temp;
for (int 1 = 0; 1 < 4; 1i++)
if (x[1] > y[i]) |
temp = al[i]; // Swap al[i] and b[i] if x[i] > yI[i]
ali] = bli];
b[i] = temp;
}
}
And now the assembly code using XMM vectors:
; Example 13.8b. Conditional swapping in XMM registers, SSE

The

movaps xmm2, [v] ; Load y vector

cmpltps xmm2, [x] ; Compare with x. xmm2 = mask for y < x
movaps xmm0, [a] ; Load a vector

movaps xmml, [b] ; Load b vector

XOorps xmm0, xmml ; a XOR b

andps xmm2, xmm0 ; (a XOR b) AND mask

XOrps xmml, xmm2 ; b XOR ((a XOR b) AND mask)

XOrps xmm2, [a] ; a XOR ((a XOR b) AND mask)

movaps [b], xmml ;o (x[1] > yI[i]) 2 ali] bli]

movaps [a], xmm2 ;o (x[1] > yI[i]) 2 bli] ali]

xorps xmm0, xmml iNstruction generates a pattern of the bits that differ between a and

b. This bit pattern is AND'ed with the mask so that xmm2 contains the bits that need to be
changed if a and b should be swapped, and zeroes if they should not be swapped. The last
two xorps instructions flip the bits that have to be changed if 2 and b should be swapped
and leave the values unchanged if not.

The

mask used for conditional moves can also be generated by copying the sign bit into all

bit positions using the arithmetic shift right instruction psrad. This is illustrated in the next
example where vector elements are raised to different integer powers. We are using the
method in example 12.16a page 115 for calculating powers.

// Example 13.9a. Raise vector elements to different integer powers

double x[2], yI[2]; wunsigned int n[2];
for (int i = 0; 1 < 2; i++) {
y[i] = pow(x[1i],n[1]);

If the elements of n are equal then the simplest solution is to use a branch. But if the powers
are different then we have to use conditional moves:

; Example 13.9b. Raise vector to power, using integer mask, SSE2

.data ; Data segment
align 16 ; Must be aligned
ONE DQ 1.0, 1.0 ; Make constant 1.0
X Do 2, ? ; x[0], x[1]

Y Do 2, 7 ;o yl0], yI1]

N DD 2, ? ; n[0], n[1]

.code

; register use:

; xmm0 = xp

; xmml = power

;o oxmm2 = 1 (10 and il each stored twice as DWORD integers)
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; xmm3 = 1.0 if not (i & 1)

;o xmm4 = xp  if (1 & 1)

movqg xmm2, [N] ; Load n0O, nl

punpckldg xmm2, xmm2 ; Copy to get nO, nO, nl, nl

movapd xmm0, [X] ; Load x0, x1

movapd xmml, [one] ; power initialized to 1.0

mov eax, [N] ; nO

or eax, [N+4] ; n0 OR nl to get highest significant bit

XOr ecx, ecx ; 0 if n0 and nl are both zero

bsr ecx, eax ; Compute repeat count for max(n0,nl)
L1l: movdga xmm3, xmm2 ; Copy 1

pslld xmm3, 31 ; Get least significant bit of i

psrad xmm3, 31 ; Copy to all bit positions to make mask

psrld xmm2, 1 ;1 o>>=1

movapd xmm4, xmmO ; Copy of xp

andpd xmm4, xmm3 ; xp 1f bit =1

andnpd xmm3, [one] ; 1.0 1f bit = 0

orpd xmm3, xmmé ; (1 & 1) 2 xp @ 1.0

mulpd xmml, xmm3 ; power *= (i & 1) ?2 xp : 1.0

mulpd xmm0, xmmO ; Xp *= Xp

sub ecx, 1 ; Loop counter

jns Ll ; Repeat ecx+l times

movapd [Yijg, xmml ; Store result

The repeat count of the loop is calculated separately outside the loop in order to reduce the
number of instructions inside the loop.

Timing analysis for example 13.9b in P4AE: There are four continued dependency chains:
xmm0; 7 clocks, xmm1: 7 clocks, xmm2: 4 clocks, ecx: 1 clock. Throughput for the different
execution units: MMX-SHIFT: 3 pops, 6 clocks. MMX-ALU: 3 pops, 6 clocks. FP-MUL: 2
pops, 4 clocks. Throughput for port 1: 8 pops, 8 clocks. Thus, the loop appears to be limited
by port 1 throughput. The best timing we can hope for is 8 clocks per iteration which is the
number of pops that must go to port 1. However, three of the continued dependency chains
are interconnected by two broken, but quite long, dependency chains involving xmm3 and
xmm4, Which take 23 and 19 clocks, respectively. This tends to hinder the optimal reordering
of pops. The measured time is approximately 10 pops per iteration. This timing actually
requires a quite impressive reordering capability, considering that several iterations must be
overlapped and several dependency chains interwoven in order to satisfy the restrictions on
all ports and execution units.

Conditional moves in general purpose registers using cvMovcc and floating point registers
using FcMovece are no faster than in XMM registers.

On processors with the SSE4.1 instruction set we can use the PBLENDVB, BLENDVPS Of
BLENDVPD instructions instead of the AND/OR operations as in example 13.7c¢ above. On
AMD processors with the XOP instruction set we may alternatively use the vecmov
instruction in the same way.

13.5 Conditional moves with AVX512

The AVX512 instruction set supports masked operations controlled by a mask register. A
masked vector instruction will do its operation only on those vector elements for which the
corresponding bit in the mask register is 1. We can rewrite example 13.7 to illustrate this:

// Example 13.10a. Branch in loop using AVX512
float all6], b[le6e], cl[le6e], x[1l6], y[l6];
for (int 1 = 0; 1 < 16; i++) {

c[i] = x[1i] > yI[i] ? ali]l : bI[il;
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The implementation of this with AVX512 is quite efficient:

; Example 13.10b. Conditional move in ZMM registers

vmovaps zmml, [v] ; Load vector y

vempltps k1, zmml, [x] ; Compare with x. kl = mask for y < x
vmovaps zmm0O, [b] ; Load vector b

vmovaps zmmO{kl}, [a] ; Load vector a for elements with mask bit 1
vmovaps [c], zmmO ; c=x>y ?2a:b

Most vector instructions can be masked under AVX512, for example:

// Example 13.1la. Conditional addition using AVX512
float al[l6], bll6];
for (int i = 0; 1 < 16; 1i++) {
if (ali] <
ali] +=

0) {
b[i];

This can be implemented with a masked addition:

; Example 13.11lb. Conditional add in ZMM registers

vmovaps zmml, [a] ; Load vector a

vpxord zmmQO, zmmO, zmmO ; Make zero

vempltps k1, zmml, zmmO ; Compare with zero. kl = mask for a < 0
vaddps zmml{k1l}, zmml, [b] ; Masked addition

vmovaps [a], zmml ; Store result

Masked instructions can also be used on the smaller xmm and ymm registers if the
instruction set extension AVX512VL is supported. The vpxord instruction may be replaced
by vxorps if AVX512DQ is supported.

In the above examples, the vector elements for which the mask bit is 0 are unchanged. It is
possible to set the disabled elements to zero, rather than making them unchanged, by
specifying the {z} option:

; Example 13.12. Masking and zeroing

mov eax, 000FH ; make constant

kmovw kl, eax ; copy constant to mask register
vmovaps zmml{kl}, [a] ; conditional move

vmovaps zmm2{kl}{z}, [b] ; conditional move with zeroing

In this example, the first four elements of array = are loaded into zmm1 and the remaining
elements of zmm1 are unchanged. The first four elements of array b are loaded into zmm2
and the remaining elements of zmm2 are set to zero. The zeroing option is useful because it
removes the dependence of zmm2 on the previous value of zmm2. It is recommended to use
the zeroing option whenever it is appropriate because this makes out-or-order execution of
masked instructions more efficient.

The masking comes for free in the sense that the latencies and throughputs of most
instructions are the same with and without masking, regardless of the value of the mask. On
the other hand, you may be wasting time on calculations where the mask is all zeroes. It
may be advantageous to skip time-consuming conditional calculations if the mask is all
zeroes. For example:

// Example 13.13a. Skip calculations if mask is all zeroes
float a[l6], b[l6];

for (int 1 0; 1 < 16; i++) {
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If it often happens that all elements of the array a are negative then we may skip the time-
consuming square root:

; Example 13.13b. Skip calculations if mask is all zeroes

vmovaps zmml, [a] ; Load vector a

vpxord zmmO, zmmO, zmmO ; Make zero

vempltps k1, zmml, zmmO ; Compare with zero. kl = mask for a < 0
kortestw k1, kil ; test bits of kil

jz Ll ; jJump i1if all zero

vmovaps zmm2, [Db] ; Load vector b

vsgrtps zmm2{kl}, zmml ; square root of non-negative elements
vmovaps [b], zmm2 ; Store modified b

Ll:

A masked instruction can often replace two instructions because it does two things. Even
compare instructions that have a mask register as output can be masked. Compare and test
instructions with a mask register as output and an additional mask applied always have an
implicit zeroing option so that the output mask is zero, rather than unchanged, for bits where
the input mask is zero. The result is a logical AND combination of the comparison result and
the input mask. This means that AND combinations can be implemented more efficiently
than OR combinations. The following example illustrates this:

// Example 13.14a. Use of masks

float af[l6], bll6], cl[l6];

for (int i = 0; 1 < 16; 1i++) {

if (ali]l > [l b[i] > 0) |
cli] = a[i] + b[i];

}
else {
c[i] = ali] - bl[i];

}

We can convert the OR (| |) to AND (s¢) in this example by inverting all inputs and outputs
according tothe formula: 2 || b = ! (!a && !b). This changes the code to:

// Example 13.14b. Use of masks, convert OR to AND
float al[l6], b[l6], cl[l6];
for (int i = 0; 1 < 16; 1i++) {

if (ali] <= 0 && b[i] <= 0) {

c[i] = ali] - bl[i];
}
else {

c[i] = ali] + b[i];

}

This is useful because the AND operation can be optimized by masking the second

compare instruction with the result of the first one:
; Example 13.14c. Efficient use of masks

vmovaps zmml, [a] ; Load vector a

vmovaps zmmZ2, [b] ; Load wvector b

vpxord zmmO, zmmO, zmmO ; Make zero

vcmpleps k1, zmml, zmmO ; k1 = mask for a <=0

vcmpleps k2{kl},zmm2, zmmO ; k2 = mask for a <= 0 && b <= 0
vaddps zmmO, zmml, zmm2 ; a + b

vsubps zmmO{k2}, zmml, zmm2 ; a - b if mask
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vmovaps [c], zmmO ; Store result

13.6 Using vector instructions with other types of data than they are intended
for

Most XMM, YMM and ZMM instructions are 'typed' in the sense that they are intended for a
particular type of data. For example, it doesn't make sense to use an instruction for adding
integers on floating point data. But instructions that only move data around will work with
any type of data even though they are intended for one particular type of data. This can be
useful if an equivalent instruction doesn't exist for the type of data you have or if an
instruction for another type of data is more efficient.

All vector instructions that move, shuffle, blend or shift data as well as the Boolean
instructions can be used for other types of data than they are intended for. But instructions
that do any kind of arithmetic operation, type conversion or precision conversion can only be
used for the type of data it is intended for. For example, the FLD instruction does more than
move floating point data, it also converts to a different precision. If you try to use r1.0 and
rsTP for moving integer data then you may get exceptions for subnormal operands in case
the integer data do not happen to represent a normal floating point number. The instruction
may even change the value of the data in some cases. But the instruction Mmovarps, which is
also intended for moving floating point data, does not convert precision or anything else. It
just moves the data. Therefore, it is OK to use Movaprs for moving integer data.

If you are in doubt whether a particular instruction will work with any type of data then check
the software manual from Intel or AMD. If the instruction can generate any kind of "floating
point exception” then it should not be used for any other kind of data than it is intended for.

There is a penalty for using the wrong type of instructions on some processors. This is
because the processor may have different data buses or different execution units for integer
and floating point data. Moving data between the integer and floating point units can take
one or more clock cycles depending on the processor, as listed in table 13.3.

Processor Bypass delay, clock cycles
Intel Core 2 and earlier 1
Intel Nehalem 2
Intel Sandy Bridge and later 0-1
Intel Atom 0
AMD 2
VIA Nano 2-3

Table 13.3. Data bypass delays between integer and floating point execution units

On Intel Core 2 and earlier Intel processors, some floating point instructions are executed in
the integer units. This includes XMM move instructions, Boolean, and some shuffle and
pack instructions. These instructions have a bypass delay when mixed with instructions that
use the floating point unit. On most other processors, the execution unit used is in
accordance with the instruction name, e.g. Movaprs xMM1, xMM2 uses the floating point unit,

MOVDQA XMM1,xMM2 USes the integer unit.

Instructions that read or write memory use a separate unit. The bypass delay from the
memory unit to the floating point unit may be longer than to the integer unit on some
processors, but it doesn't depend on the type of the instruction. Thus, there is no difference
in latency between Movaps xMM0, [MEM] and MOVDQA XMMO, [MEM] ON current processors,
but it cannot be ruled out that there will be a difference on future processors.

More details about the execution units of the different processors can be found in manual 3
"The microarchitecture of Intel, AMD and VIA CPUs". Manual 4: "Instruction tables" has lists
of all instructions, indicating which execution units they use.
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Using an instruction of a wrong type can be advantageous in cases where there is no
bypass delay and in cases where throughput is more important than latency. Some cases
are described below.

Using the shortest instruction

The instructions for packed single precision floating point numbers, with names ending in
ps, are one byte shorter than equivalent instructions for double precision or integers. For
example, you may use MOVAPS instead of MOvAPD or MovDQA for moving data to or from
memory or between registers. A bypass delay occurs in some processors when using
MOVAPS for moving the result of an integer instruction to another register, but not when
moving data to or from memory.

Using the most efficient instruction

An efficient way of setting a vector register to zero is PXorR xMM0, XMMO. Many processors
recognize this instruction as being independent of the previous value of xvm0, while not all
processors recognize the same for xorps and xorpD. The PxoOR instruction is therefore
preferred for setting a register to zero.

The integer versions of the Boolean vector instructions (PAND, PANDN, POR, PXOR) Ccan use
more different execution units than the floating point equivalents (axpes, etc.) on some AMD
and Intel processors.

Using an instruction that is not available for other types of data

There are many situations where it is advantageous to use an instruction intended for a
different type of data simply because an equivalent instruction doesn't exist for the type of
data you have.

The instructions for single precision float vectors are available in the SSE instruction set,
while the equivalent instructions for double precision and integers require the SSE2
instruction set. Using MovaPs instead of MovaprD or MovDoA for moving data makes the code
compatible with processors that have SSE but not SSE2.

There are many useful instructions for data shuffling and blending that are available for only
one type of data. These instructions can easily be used for other types of data than they are
intended for. The bypass delay, if any, may be less than the cost of alternative solutions.
The data shuffling instructions are listed in the next paragraph.

13.7 Permuting data

Vectorized code sometimes needs a lot of instructions for swapping and copying vector
elements and putting data into the right positions in the vectors. The need for these extra
instructions reduces the advantage of using vector operations. It is possible to use a
shuffling instruction that is intended for a different type of data than you have, as explained
in the previous paragraph. Some instructions that are useful for data permutation are listed
below.

Permute data within each 128-bit lane

Instruction Block size, Description Instruction
bits set
PSHUFD 32 General permute SSE2
PSHUFLW 16 Permutes low half of register only SSE2
PSHUFHW 16 Permutes high half of register only SSE2
SHUFPS 32 Permute SSE
SHUFPD 64 Permute SSE2
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PSLLDQ 8 Shifts to a different position and sets the original | SSE2
position to zero
PSHUFB 8 General permute Suppl. SSE3
PALIGNR 8 Rotate vector of 8 or 16 bytes Suppl. SSE3
PINSRB 8 Insert byte into vector SSE4.1
PINSRW 16 Insert word into vector SSE
PINSRD 32 Insert dword into vector SSEA4.1
PINSRQ 64 Insert qword into vector SSE4.1
INSERTPS 32 Insert dword into vector SSE4.1
VPERMILPS 32 Permute with variable selector AVX
VPERMILPD 64 Permute with variable selector AVX
VPPERM 8 Permute with variable selector AMD XOP
Table 13.4. Permute instructions
Permute data, crossing 128-bit lanes
Instruction Block size, Description Instruction
bits set
VPERMW 16 Permute with variable selector AVX512BW
VPERMD 32 Permute with variable selector AVX2
VPERMQ 64 Permute with variable selector AVX2
VPERMPD 32 Permute with variable selector AVX2
VPERMPD 64 Permute with variable selector AVX2
VPERMI/T2B 8 Permute from two sources AVX512VBMI
VPERMI/T2W 16 Permute from two sources AVX512BW
VPERMI/T2D 32 Permute from two sources AVX512
VPERMI/T2Q 64 Permute from two sources AVX512
VPERMI/T2PS 32 Permute from two sources AVX512
VPERMI/T2PD 64 Permute from two sources AVX512
VPERM2I128 128 Permute from two sources AVX2
VPERMZ2F128 128 Permute from two sources AVX
Table 13.5. Full permute instructions
Combining data from two different sources
Instruction Block size, Description Instruction
bits set
SHUFPS 32 Lower 2 dwords from any position of destination | SSE
higher 2 dwords from any position of source
SHUFPD 64 Low gqword from any position of destination SSE2
high qword from any position of source
MOVLPS/D 64 Low qword from memory, SSE/SSE2
high gword unchanged
MOVHPS/D 64 High gword from memory, SSE/SSE2
low qword unchanged
MOVLHPS 64 Low gword unchanged, SSE
high gword from low of source
MOVHLPS 64 Low gword from high of source, SSE
high gword unchanged
MOVSS 32 Lowest dword from source (register only), SSE
bits 32-127 unchanged
MOVSD 64 Low qword from source (register only), SSE?2
high gword unchanged
PUNPCKLBW 8 Low 8 bytes from source and destination SSE2
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interleaved
PUNPCKLWD 16 Low 4 words from source and destination SSE2
interleaved
PUNPCKLDQ 32 Low 2 dwords from source and destination SSE2
interleaved
PUNPCKLQDQ 64 Low gword unchanged, SSE2
high gword from low of source
PUNPCKHBW 8 High 8 bytes from source and destination SSE2
interleaved
PUNPCKHWD 16 High 4 words from source and destination SSE2
interleaved
PUNPCKHDQ 32 High 2 dwords from source and destination SSE2
interleaved
PUNPCKHQDQ 64 Low gword from high of destination, SSE2
high gword from high of source
PACKUSWB 8 Low 8 bytes from 8 words of destination, high 8 | SSE2
bytes from 8 words of source. Converted with
unsigned saturation.
PACKSSWB 8 Low 8 bytes from 8 words of destination, high 8 | SSE2
bytes from 8 words of source. Converted with
signed saturation.
PACKSSDW 16 Low 4 words from 4 dwords of destination, high | SSE2
4 words from 4 dwords of source. Converted
with signed saturation.
PINSRB 8 Insert byte into vector SSEA4.1
PINSRW 16 Insert word into vector SSE
PINSRD 32 Insert dword into vector SSE4.1
INSERTPS 32 Insert dword into vector SSE4.1
PINSRQ 64 Insert gword into vector SSE4.1
VINSERTF128 128 Insert xmmword into vector AVX
PALIGNR 8 Double shift (analogous to SHRD) Suppl. SSE3
PBLENDW 16 Blend from two different sources SSE4.1
BLENDPS 32 Blend from two different sources SSE4.1
BLENDPD 64 Blend from two different sources SSE4.1
PBLENDVB 8 Multiplexer SSE4.1
BLENDVPS 32 Multiplexer SSE4.1
BLENDVPD 64 Multiplexer SSE4.1
VPCMOV 1 Multiplexer AMD XOP
VPBLENDD 32 Multiplexer AVX2
VPBLENDMB 8 Multiplexer with mask as selector AVX512BW
VPBLENDMW 16 Multiplexer with mask as selector AVX512BW
VPBLENDMD 32 Multiplexer with mask as selector AVX512
VPBLENDMQ 64 Multiplexer with mask as selector AVX512
VBLENDMPS 32 Blend with mask as selector AVX512
VBLENDMPD 64 Blend with mask as selector AVX512
Table 13.6. Combine data
Broadcasting data to all elements of a register
Instruction Block Description Instruc-
size, bits tion set
PSHUFD xmm2, xmml, 0 32 broadcast dword SSE2
PSHUFD xmm2, xmml, OEEH 64 broadcast gword SSE2
MOVDDUP 64 broadcast gword SSE3
MOVSLDUP 32 2 copies of each of dword 0 and 2 SSE3
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MOVSHDUP 32 2 copies of each of dword 1 and 3 SSE3
VBROADCASTSS 32 broadcast dword from memory AVX
VBROADCASTSS 32 broadcast dword from register AVX512
VBROADCASTSD 64 broadcast gword from memory AVX
VBROADCASTSD 64 broadcast gword from register AVX512
VBROADCASTF128 128 broadcast 16 bytes from memory AVX
VPBROADCASTB 8 broadcast byte from register or memory | AVX2
VPBROADCASTW 16 broadcast word from register or memory | AVX2
VPBROADCASTD 32 broadcast dword from register or memory | AVX2
VPBROADCASTQ 64 broadcast gword from register or memory | AVX2
VBROADCASTF32X2 64 broadcast gword from register or memory | AVX512DQ
VBROADCASTF32X4 128 broadcast 16 bytes from memory AVX512
VPBROADCASTMB2Q 8 broadcast mask register to vector AVX512CD
VPBROADCASTMW2D 16 broadcast mask register to vector AVX512CD

Table 13.7. Move and broadcast data

In addition to these instructions, many AVX512 instructions have an option to use a
broadcast memory operand.

Merge data from different memory locations into one vector (gather)

Instruction Block Description Instruc-

size, bits tion set
VPGATHERDD 32 gather dwords with dword indices AVX2
VPGATHERQD 32 gather dwords with gword indices AVX2
VPGATHERDQ 64 gather qwords with dword indices AVX2
VPGATHERQQ 64 gather qwords with gword indices AVX2
VGATHERDPS 32 gather dwords with dword indices AVX2
VGATHERQPS 32 gather dwords with gword indices AVX2
VGATHERDPD 64 gather qwords with dword indices AVX2
VGATHERQPD 64 gather qwords with gword indices AVX2

Table 13.8. Gather instructions

Vectorized table lookup
Permute instructions can be used for table lookup if the entire table can be contained in one
or a few vector registers. If the table is too big then you have to use the slower gather
instructions for table lookup.

Example: Horizontal addition

The following examples show how to add all elements of a vector

; Example 13.15a.

; (SSE2)
movaps
pxor
psadbw
pshufd
paddd
movd

xmml, [source]
xmm0O, xmmO
xmml, xmmO

0

xmm0, xmml Sum

[sum], xmmO

Source vector,

Store sum

Add 16 elements in vector of 8-bit unsigned integers
16 8-bit unsigned integers

; Sum of 8 differences
xmm0, xmml, OEH ; Get bit 64-127 from xmml

; Example 13.15b. Add eight elements in vector of 16-bit integers

; (SUPPL.

movaps
phaddw
phaddw
phaddw

SSE3)
xmm(O, [source] ; Source vector,

xmm0, xmmO
xmm0, xmmO
xmm0, xmmO
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movq [sum], xmmO ; Store sum

; Example 13.15c. Add eight

7 (AVX)

vmovaps ymmO, [source] ; Source vector,
vextractf1l28 xmml, ymmO, 1 ; Get upper half
vaddps xmm0O, xmmO, xmml ; Add

vhaddps xmmQO, xmmO, xmmO

vhaddps xmm0, xmmO, xmmO

vmovsd [sum] , xmmO ; Store sum

13.8 Generating constants

elements in vector of 32-bit integers

8 32-bit floats

There is no instruction for moving a constant into an XMM register. The default way of
putting a constant into an XMM register is to load it from a memory constant. This is also the
most efficient way if cache misses are rare. But if cache misses are frequent then we may

look for alternatives.

One alternative is to copy the constant from a static memory location to the stack outside
the innermost loop and use the stack copy inside the innermost loop. A memory location on
the stack is less likely to cause cache misses than a memory location in a constant data
segment. However, this option may not be possible in library functions.

A second alternative is to store the constant to stack memory using integer instructions and
then load the value from the stack memory to the XMM register.

A third alternative is to generate the constant by clever use of various instructions. This
does not use the data cache but takes more space in the code cache. The code cache is
less likely to cause cache misses because the code is contiguous.

The constants may be reused many times as long as the register is not needed for

something else.

The table 13.9 below shows how to make various integer constants in XMM registers. The
same value is generated in all cells in the vector:

Making constants for integer vectors in XMM registers

Value | 8 bit 16 bit 32 bit 64 bit

0 pxor xmmO, xmm0 pxor xmm0O, xmm0O pxor xmmO, xmmO pxor xmmO, xmm0

1 pcmpegw xmm0, xmm0 pcmpegw xmm0, xmmO0 pcmpegd xmmO, xmm0 pcmpegw xmmO0, xmm0
pabsb xmmO, xmmO psrlw xmmO, 15 psrld xmmO, 31 psrlg xmmO, 63

2 pcmpegw xmm0, xmm0 pcmpegw xmm0, xmmO0 pcmpegd xmmO, xmm0 pcmpegw xmmO0, xmm0

pabsb xmm0, xmm0
paddb xmmO, xmmO0

psrlw xmmO, 15
psllw xmmO, 1

psrld xmmO, 31
pslld xmmO, 1

psrlg xmmO, 63
psllg xmmO, 1

3 pcmpegw xmmO, xmmO
psrlw xmmO, 14
packuswb xmm0O, xmmO

pcmpegw xmmO, xmmO
psrlw xmmO, 14

pcmpegd xmmO, xmm0
psrld xmmO, 30

pcmpegw xmmO, xmm0
psrlg xmmO, 62

4 pcmpegw xmm0, xmm0
pabsb xmm0, xmm0
psllw xmmO, 2

pcmpegw xmm0, xmmO0
psrlw xmmO, 15
psllw xmmO, 2

pcmpegd xmmO, xmm0
psrld xmmO, 31
pslld xmmO, 2

pcmpegw xmmO0, xmm0
psrlg xmmO, 63
psllg xmmO, 2

-1 pcmpegw xmm0, xmmO0 pcmpegw xmm0, xmmO pcmpegd xmm0, xmmO0 pcmpegw xmm0, xmmO0
-2 pcmpegw xmm0, xmmO0 pcmpegw xmm0, xmmO pcmpeqgd xmm0, xmmO0 pcmpegw xmm0, xmmO0
paddb xmmO, xmmO0 psllw xmmO, 1 pslld xmmO, 1 psllg xmmO, 1
Other mov eax, mov eax, mov eax,value mov rax,value
value value*01010101H value*10001H movd xmmO, eax movg xmm0O, rax

movd xmm0O, eax
pshufd xmmO, xmmO, 0

movd xmmO, eax

pshufd xmmO, xmm0, 0

pshufd xmm0O, xmmO, O

punpcklgdg xmmO, xmmO
(64 bit mode only)

Table 13.9. Generate integer vector constants
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Table 13.10 below shows how to make various floating point constants in XMM registers.
The same value is generated in one or all cells in the vector:

Making floating point constants in XMM registers

Value | scalar single scalar double vector single vector double

0.0 pxor xmmO, xmmO pxor xmmO, xmmO pxor xmmO, xmmO pxor xmmO, xmmO

0.5 pcmpegw xmm0, xmmO0 pcmpegw xmmO, xmmO0 pcmpegw xmmO, xmm0 pcmpegw xmmO0, xmm0
pslld xmmO, 26 psllg xmmO, 55 pslld xmmO, 26 psllg xmmO, 55
psrld xmmO, 2 psrlg xmmO, 2 psrld xmmO, 2 psrlg xmmO, 2

1.0 pcmpegw xmmO, xmmO0 pcmpegw xmm0, xmmO0 pcmpegw xmmO, xmm0 pcmpegw xmmO, xmm0
pslld xmmO, 25 psllg xmmO, 54 pslld xmmO, 25 psllg xmmO, 54
psrld xmmO, 2 psrlg xmmO, 2 psrld xmmO, 2 psrlg xmmO, 2

1.5 pcmpegw xmmO0, xmmO0 pcmpegw xmm0, xmmO0 pcmpegw xmmO, xmm0 pcmpegw xmmO, xmm0
pslld xmmO, 24 psllg xmmO, 53 pslld xmmO, 24 psllg xmmO, 53
psrld xmmO, 2 psrlg xmmO, 2 psrld xmmO, 2 psrlg xmmO, 2

2.0 pcmpegw xmmO0, xmmO0 pcmpegw xmmO, xmmO0 pcmpegw xmmO, xmm0 pcmpegw xmmO0, xmm0
pslld xmmO, 31 psllg xmmO, 63 pslld xmmO, 31 psllg xmmO, 63
psrld xmmO, 1 psrlg xmmO, 1 psrld xmmO, 1 psrlg xmmO, 1

2.0 pcmpegw xmmO0, xmmO0 pcmpegw xmm0, xmmO0 pcmpegw xmmO, xmm0 pcmpegw xmmO, xmm0
pslld xmmO, 30 psllg xmmO, 62 pslld xmmO, 30 psllg xmmO, 62

ggrlbn pcmpegw xmm0, xmmO0 pcmpegw xmm0, xmmO0 pcmpegw xmmO, xmm0 pcmpegw xmmO0, xmm0
pslld xmmO, 31 psllg xmmO, 63 pslld xmmO, 31 psllg xmmO, 63

not pcmpegw xmm0, xmmO0 pcmpegw xmm0, xmmO0 pcmpegw xmmO, xmm0 pcmpegw xmmO0, xmm0

sign bit psrld xmmO,1 psrlg xmmO, 1 psrld xmmO, 1 psrlg xmmO, 1

Other mov eax, value mov eax, value>>32 mov eax, value mov eax, value>>32

value movd xmmO, eax movd xmmO, eax movd xmmO, eax movd xmmO, eax

(32 bit psllg xmmO, 32 shufps xmm0O, xmmO, O pshufd xmmO, xmmO, 22H

mode)

Other mov eax, value mov rax, value mov eax, value mov rax, value

value movd xmmO, eax movg xmm0O, rax movd xmmO, eax movqg xmm0, rax

(64 bit shufps xmm0O, xmmO, O shufpd xmm0O, xmmO, O

mode)

Table 13.10. Generate floating point vector constants

The "sign bit" is a value with the sign bit set and all other bits = 0. This is used for changing
or setting the sign of a variable. For example to change the sign of a 2*double vector in

xmmO.

’

pcmpegw xmm7,
psllg
xorpd

Example 13.16.

xmm'/
xmm7, 63
xmmQO, xmm7

Change

; A1l 1's

sign of 2*double vector

; Shift out the lower 63 1's
; Flip sign bit of xmmO

The "not sign bit" is the inverted value of "sign bit". It has the sign bit = 0 and all other bits =
1. This is used for getting the absolute value of a variable. For example to get the absolute
value of a 2*double vector in xmmo0:

’

Example 13.17.

pcmpedqw xmmbé6, xmmbé
psrlg xmm6, 1
andpd xmm0, xmmé6

; All 1's

Absolute value of 2*double vector

; Shift out the highest bit

; Set sign bit to O

Generating an arbitrary double precision value in 32-bit mode is more complicated. The
method in table 13.10 uses only the upper 32 bits of the 64-bit representation of the
number, assuming that the lower binary decimals of the number are zero or that an
approximation is acceptable. For example, to generate the double value 9.25, we first use a

compiler or assembler to find that the hexadecimal representation of 9.25 is

4022800000000000H. The lower 32 bits can be ignored, so we can do as follows:

135




; Example 13.18a. Set 2*double vector to arbitrary value (32 bit mode)

mov eax, 40228000H ; High 32 bits of 9.25
movd xmm0, eax ; Move to xmmO
pshufd xmm0, xmmO, 22H ; Get value into dword 1 and 3

In 64-bit mode, we can use 64-bit integer registers:

; Example 13.18b. Set 2*double vector to arbitrary value (64 bit mode)

mov rax, 4022800000000000H ; Full representation of 9.25
movq xmm0, rax ; Move to xmmO
shufpd xmmQO, xmm0O, O ; Broadcast

Note that some assemblers use the very misleading name movd instead of movqg for the
instruction that moves 64 bits between a general purpose register and an xMM register.

13.9 Accessing unaligned data and partial vectors

All data that are read or written with vector registers should preferably be aligned by the
vector size. See page 84 for how to align data.

Older processors have a penalty for accessing unaligned data, while modern processors
handle unaligned data almost as fast as aligned data.

There are situations where alignment is not possible, for example if a library function
receives a pointer to an array and it is unknown whether the array is aligned or not.

The following methods can be used for reading unaligned vectors:

Using unaligned read instructions

The instructions MovDQU, MOVUPS, MOVUPD and LpDQU are all able to read unaligned vectors.
1.DDQU is faster than the alternatives on P4E and PM processors, but not on any later
processors. The unaligned read instructions are relatively slow on older Intel processors
and on Intel Atom, but fast on Nehalem and later Intel processors as well as on AMD and
VIA processors.

; Example 13.19. Unaligned vector read
; esi contains pointer to unaligned array
movdqu xmmO, [esi] ; Read vector unaligned

On contemporary processors, there is no penalty for using the unaligned instruction MovDQU
rather than the aligned movpoa if the data are in fact aligned. Therefore, it is convenient to
use MovDQU if you are not sure whether the data are aligned or not.

Using VEX-prefixed instructions

Instructions with VEX prefix allow unaligned memory operands while the same instructions
without VEX prefix will generate an exception if the operand is not properly aligned:

; Example 13.20. VEX versus non-VEX access to unaligned data
movups xmml, [esi] ; unaligned operand must be read first
addps xmmO, xmml

; VEX prefix allows unaligned operand
vaddps xmmO, [esi] ; unaligned operand allowed here

You should never mix VEX and non-VEX code if the 256-bit YMM registers are used. It is
OK to mix AVX and AVX-512 instructions, though. See chapter 13.1.
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Splitting an unaligned read in two

Instructions that read 8 bytes or less have no alignment requirements and are often quite
fast unless the read crosses a cache boundary. Example:

; Example 13.21. Unaligned 16 bytes read split in two

; esl contains pointer to unaligned array

movqg xmm0, gword ptr [esi] ; Read lower half of wvector
movhps xmm0O, gword ptr [esi+8] ; Read upper half of wvector

This method is faster than using unaligned read instructions on older Intel processors, but
not on Intel Nehalem and later Intel processors. There is no reason to use this method on
newer processors from any vendor.

Partially overlapping reads

Make the first read from the unaligned address and the next read from the nearest following
16-bytes boundary. The first two reads will therefore possibly overlap:

; Example 13.22. First unaligned read overlaps next aligned read
; esil contains pointer to unaligned array

movdqu xmml, [esi] ; Read vector unaligned

add esi, 10H

and esi, -10H ; = nearest following 16B boundary
movdga xmm2, [esi] ; Read next vector aligned

Here, the data in xmm1 and xmm2 will be partially overlapping if esi is not divisible by 16.
This, of course, only works if the following algorithm allows the redundant data. The last
vector read can also overlap with the last-but-one if the end of the array is not aligned.

Reading from the nearest preceding 16-bytes boundary

It is possible to start reading from the nearest preceding 16-bytes boundary of an unaligned
array. This will put irrelevant data into part of the vector register, and these data must be
ignored. Likewise, the last read may go past the end of the array until the next 16-bytes
boundary:

; Example 13.23. Reading from nearest preceding l6-bytes boundary
; esi contains pointer to unaligned array

mov eax, esi ; Copy pointer

and esi, -10H ; Round down to value divisible by 16
and eax, OFH ; Array is misaligned by this wvalue
movdga xmml, [esi] ; Read from preceding 16B boundary
movdga xmm2, [esi+10H] ; Read next block

In the above example, xmm1 contains eax bytes of junk followed by (16-cax) useful bytes.
xmm2 contains the remaining eax bytes of the vector followed by (16-cax) bytes which are
either junk or belonging to the next vector. The value in eax should then be used for
masking out or ignoring the part of the register that contains junk data.

Here we are taking advantage of the fact that vector sizes, cache line sizes and memory
page sizes are always powers of 2. The cache line boundaries and memory page
boundaries will therefore coincide with vector boundaries. While we are reading some
irrelevant data with this method, we will never load any unnecessary cache line, because
cache lines are always aligned by some multiple of 16. There is therefore no cost to reading
the irrelevant data. And, more importantly, we will never get a read fault for reading from
non-existing memory addresses, because data memory is always allocated in pages of
4096 (= 2'?) bytes or more so the aligned vector read can never cross a memory page
boundary.
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An example using this method is shown in the strlenSSE2.asm example in the appendix
www.agner.org/optimize/asmexamples.zip.

Combine two unaligned vector parts into one aligned vector

The above method can be extended by combining the valid parts of two registers into one
full register. If xmm1 in example 13.23 is shifted right by the unalignment value (eax) and
xmm?2 IS shifted left by (16-eax) then the two registers can be combined into one vector
containing only valid data.

Unfortunately, there is no instruction to shift a whole vector register right or left by a variable
count (analogous to shr eax, cl) so we have to use a shuffle instruction. The next
example uses a byte shuffle instruction, psHUFB, with appropriate mask values for shifting a
vector register right or left:

; Example 13.24. Combining two unaligned parts into one vector.
; (Supplementary-SSE3 instruction set required)

; This example takes the squareroot of n floats in an unaligned
; array src and stores the result in an aligned array dest.

; C++ code:

; const int n = 100;

; float * src;

; float dest[n];

; for (int 1=0; i<n; i++) dest[i] = sqgrt(src[i]);

; Define masks for using PSHUFB instruction as shift instruction:

; The 16 bytes from SMask[l6+a] will shift right a bytes

; The 16 bytes from SMask[l6-a] will shift left a bytes

.data

SMask label xmmword
B -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
b O 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
B -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1

.code
mov esi, src ; Unaligned pointer src
lea edi, dest ; Aligned array dest
mov eax, esi
and eax, OFH ; Get misalignment, a
movdgu xmmé4, [SMask+l0H+eax] ; Mask for shift right by a
movdqu xmm5, [SMask+eax] ; Mask for shift left by 16-a
and esi, -10H ; Nearest preceding 16B boundary
XOor ecx, ecx ; Loop counter i = 0
L: ; Loop
movdga xmml, [esitecx] ; Read from preceding boundary
movdga xmm2, [esitecx+10H] ; Read next Dblock
pshufb xmml, xmmé ; shift right by a
pshufb xmm2, xmmb ; shift left by 1l6-a
por xmml, xmm2 ; combine blocks
sgrtps xmml, xmml ; compute four squareroots
movaps [editecx], xmml ; Save result aligned
add ecx, 10H ; Loop to next four values
cmp ecx, 400 ; 4*n
jb L ; Loop

Align smask by 64 if possible to avoid misaligned reads across a cache line boundary.

This method gets easier if the value of the misalignment (eax) is a known constant. We can
use psrLDOQ and psLLDQ instead of psHUFB for shifting the registers right and left. PSRLDO
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and ps1LDO belong to the SSE2 instruction set, while PsHUFB requires supplementary-
SSE3. The number of instructions can be reduced by using the PALIGNR instruction
(Supplementary-SSE3) when the shift count is constant. Certain tricks with Movss or MOVSD
are possible when the misalignment is 4, 8 or 12, as shown in example 13.25b below.

The fastest implementation has sixteen branches of code for each of the possible alignment
values in eax. See the examples for memcpy and memset in the appendix
www.agner.org/optimize/asmexamples.zip.

Combining unaligned vector parts from same array

Misalignment is inevitable when an operation is performed between two elements in the
same array and the distance between the elements is not a multiple of the vector size. In
the following C++ example, each array element is added to the preceding element:

// Example 13.25a. Add each array element to the preceding element
float x[100];
for (int 1 = 0; 1 < 99; i++) x[i] += x[1+1];

Here x [i+1] is inevitably misaligned relative to x[i]. We can still use the method of
combining parts of two aligned vectors, and take advantage of the fact that the
misalignment is a known constant, 4.

; Example 13.25b. Add each array element to the preceding element

XOor ecx, ecx ; Loop counter i = 0
lea esi, x ; Pointer to aligned array
movaps xmm0, [esi] ; x3,x2,x1,x0
L: ; Loop
movaps xmmZ2, xmmQO ; x3,x2,x1,x0
movaps xmml, [esit+tecx+10H] ; x7,x6,x5,x4
; Use trick with movss to combine parts of two vectors
movss xmm2, xmml ; x3,x2,x1,x4

; Rotate right by 4 bytes
shufps xmm2, xmm2, 00111001B ; x4,x3,x2,x1

addps xmmQO, xmm2 ; x3+x4,x2+x3,x1+x2,x0+x1
movaps [esitecx], xmmO ; save aligned

movaps xmm0, xmml ; Save for next iteration
add ecx, 16 ;1 4= 4

cmp ecx, 400-16 ; Repeat for 96 values

Jb L

; Do the last odd one:

L: movaps xmm2, xmm0O ; x99,x98,x97,x96
XOrps xmml, xmml ; 0,0,0,0
movss xmm2, xmml ; x99,x98,x97,0
; Rotate right by 4 bytes
shufps xmm2, xmm2, 00111001B ; 0,x99,x98,x97
addps xmmO, xmm2 ; x99+0,x98+x99,x97+x98,x96+x97
movaps [esitecx], xmmO ; save aligned

Now we have discussed several methods for reading unaligned vectors. Of course we also
have to discuss how to write vectors to unaligned addresses. Some of the methods are
virtually the same.

Using unaligned write instructions

The instructions movdqu, movups, and movupd are all able to write unaligned vectors. The
unaligned write instructions are relatively slow on older Intel processors, but fast on
Nehalem and later Intel processors as well as contemporary AMD and VIA processors.

; Example 13.26. Unaligned vector write
; edi contains pointer to unaligned array
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movdqu [edi], xmmO ; Write vector unaligned

Writing 8 bytes at a time

Instructions that write 8 bytes or less have no alignment requirements and are often quite
fast unless the write crosses a cache line boundary. Example:

; Example 13.27. Unaligned vector read split in two

; edi contains pointer to unaligned array

movqg gword ptr [edi], =xmmO ; Write lower half of vector
movhps qgword ptr [edi+8], xmmO ; Write upper half of vector

This method is faster than using Movbou on older Intel processors, but not on Nehalem and
later Intel processors or contemporary AMD and VIA Intel processors.

Partially overlapping writes

Make the first write to the unaligned address and the next write to the nearest following 16-
bytes boundary. The first two writes will therefore possibly overlap:

; Example 13.28. First unaligned write overlaps next aligned write
; edi contains pointer to unaligned array

movdqgu [edi], xmml ; Write vector unaligned

add edi, 10H

and edi, OFH ; = nearest following 16B boundary
movdga [edi], xmm2 ; Write next vector aligned

Here, the data from xmm1 and xmm2 will be partially overlapping if edi is not divisible by 16.
This, of course, only works if the algorithm can generate the overlapping data. The last
vector write can also overlap with the last-but-one if the end of the array is not aligned. See
the memset example in the appendix www.agner.org/optimize/asmexamples.zip.

Writing the beqinning and the end separately

Use non-vector instructions for writing from the beginning of an unaligned array until the first
16-bytes boundary, and again from the last 16-bytes boundary to the end of the array. See
the memcpy example in the appendix www.agner.org/optimize/asmexamples.zip.

Using masked write

The instruction veMaskMovD (AVX2) and vivaskMoves (AVX), etc. can be used for writing to
the first part of an unaligned array up to the first 16-bytes boundary as well as the last part
after the last 16-bytes boundary.

The non-VEX versions of the masked move instructions, such as MASKMOVDQU are extremely
slow because they are bypassing the cache and writing to main memory (a so-called non-
temporal write). The VEX versions are faster than the non-VEX versions on Intel
processors, but not an AMD Bulldozer and Piledriver processors.

These instructions should definitely be avoided.

13.10 Vector operations in general purpose registers

Sometimes it is possible to handle packed data in 32-bit or 64-bit general purpose registers.
You may use this method on processors where integer operations are faster than vector
operations or where appropriate vector operations are not available.

A 64-bit register can hold two 32-bit integers, four 16-bit integers, eight 8-bit integers, or 64
Booleans. When doing calculations on packed integers in 32-bit or 64-bit registers, you
have to take special care to avoid carries from one operand going into the next operand if
overflow is possible. Carry does not occur if all operands are positive and so small that
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overflow cannot occur. For example, you can pack four positive 16-bit integers into rax and
use ADD RAX,RBX instead of pappw MMO,MM1 if you are sure that overflow will not occur. If
carry cannot be ruled out then you have to mask out the highest bit, as in the following
example, which adds 2 to all four bytes in Eax:

; Example 13.29. Byte vector addition in 32-bit register

mov eax, [esi] ; read 4-bytes operand

mov ebx, eax ; copy into ebx

and eax, T7f7f7f7fh ; get lower 7 bits of each byte in eax
XOr ebx, eax ; get the highest bit of each byte

add eax, 02020202h ; add desired value to all four bytes
X0or eax, ebx ; combine bits again

mov [edi],eax ; Store result

Here the highest bit of each byte is masked out to avoid a possible carry from each byte into
the next one when adding. The code is using xoOr rather than 2App to put back the high bit
again, in order to avoid carry. If the second addend may have the high bit set as well, it
must be masked too. No masking is needed if none of the two addends have the high bit
set.

It is also possible to search for a specific byte. This C code illustrates the principle by
checking if a 32-bit integer contains at least one byte of zero:

// Example 13.30. Return nonzero if dword contains null byte
inline int dword has nullbyte (int w) {
return ((w - 0x01010101) & ~w & 0x80808080);}

The output is zero if all four bytes of w are nonzero. The output will have 0x80 in the position
of the first byte of zero. If there are more than one bytes of zero then the subsequent bytes
are not necessarily indicated. (This method was invented by Alan Mycroft and published in
1987. | published the same method in 1996 in the first version of this manual unaware that
Mycroft had made the same invention before me).

This principle can be used for finding the length of a zero-terminated string by searching for
the first byte of zero. It is faster than using REPNE SCASB:

; Example 13.31, optimized strlen procedure (32-bit):
_strlen PROC NEAR
; extern "C" int strlen (const char * s);

push ebx ; ebx must be saved

mov ecx, [espt8] ; get pointer to string

mov eax, ecx ; copy pointer

and ecx, 3 ; lower 2 bits, check alignment
Jjz L2 ; s is aligned by 4. Go to loop
and eax, -4 ; align pointer by 4

mov ebx, [eax] ; read from preceding boundary
shl ecx, 3 ; *8 = displacement in bits

mov edx, -1

shl edx, cl ; make byte mask

not edx ; mask = OFFH for false bytes
or ebx, edx ; mask out false bytes

; check first four bytes for zero

lea ecx, [ebx-01010101H] ; subtract 1 from each byte
not ebx ; invert all bytes

and ecx, ebx ; and these two

and ecx, 80808080H ; test all sign bits

Jnz L3 ; zero-byte found

; Main loop, read 4 bytes aligned
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Ll: add eax, 4 ; increment pointer

L2: mov ebx, [eax] ; read 4 bytes of string
lea ecx, [ebx-01010101H] ; subtract 1 from each byte
not ebx ; invert all bytes
and ecx, ebx ; and these two
and ecx, 80808080H ; test all sign bits
jz L1 ; no zero bytes, continue loop

L3: bsf ecx, ecx ; find right-most 1-bit
shr ecx, 3 ; divide by 8 = byte index
sub eax, [esp+8] ; subtract start address
add eax, ecx ; add index to byte
pop ebx ; restore ebx
ret ; return value in eax

_strlen ENDP

The alignment check makes sure that we are only reading from addresses aligned by 4. The
function may read both before the beginning of the string and after the end, but since all
reads are aligned, we will not cross any cache line boundary or page boundary
unnecessarily. Most importantly, we will not get any page fault for reading beyond allocated
memory because page boundaries are always aligned by 2*? or more.

If the SSEZ2 instruction set is available then it may be faster to use XMM instructions with the
same alignment trick. Example 13.31 as well as a similar function using XMM registers are
provided in the appendix at www.agner.org/optimize/asmexamples.zip.

Other common functions that search for a specific byte, such as strcpy, strchr, memchr
can use the same trick. To search for a byte different from zero, just XOR with the desired
byte as illustrated in this C code:

// Example 13.32. Return nonzero if byte b contained in dword w
inline int dword has byte(int w, unsigned char b) {

w = b * 0x01010101;

return ((w - 0x01010101) & ~w & 0x80808080);}

Note if searching backwards (e.g. st rrchr) that the above method will indicate the position
of the first occurrence of b in w in case there is more than one occurrence.

14 Multithreading

There is a limit to how much processing power you can get out of a single CPU. Therefore,
many modern computer systems have multiple CPU cores. The way to make use of multiple
CPU cores is to divide the computing job between multiple threads. The optimal humber of
threads is usually equal to the number of CPU cores. The workload should ideally be evenly
divided between the threads.

Multithreading is useful where the code has an inherent parallelism that is coarse-grained.
Multithreading cannot be used for fine-grained parallelism because there is a considerable
overhead cost of starting and stopping threads and synchronizing the threads. Communi-
cation between threads can be quite costly, although these costs are reduced on newer
processors. The computing job should preferably be divided into threads at the highest
possible level. If the outermost loop can be parallelized, then it should be divided into one
loop for each thread, each doing its share of the whole job.

Thread-local storage should preferably use the stack. Static thread-local memory is
inefficient and should be avoided.
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14.1 Simultaneous multithreading

Most modern microprocessors have multiple CPU cores so that they can run multiple
threads simultaneously. Furthermore, many Intel and AMD processors can run two threads
in each core. The Knight's Corner and Knight's Landing processors can even run four
threads per core. "Hyperthreading" is Intel's term for simultaneous multithreading.

Two or more threads running in the same core will always compete for the same resources,
such as cache, instruction decoder and execution units. If any of the shared resources are
limiting factors for the performance of a single thread then there is no advantage in running
two threads in each core. On the contrary, each thread may run at less than half speed
because of cache evictions and other resource conflicts. But if a large fraction of the time
goes to cache misses, branch misprediction, or long dependency chains then each thread
will run at more than half the single-thread speed. In this case there is an advantage to
using simultaneous multithreading, but the performance is not doubled. A thread that shares
the resources of the core with another thread will always run slower than a thread that runs
alone in the core.

The higher the capacity of a CPU core, the higher the advantage of simultaneous
multithreading. The Knight's Landing processor has a quite low capacity so that it is rarely
advantageous to run two threads, and much less four threads, in this processor.
Simultaneous multithreading is more useful on the older Knight's Corner processor because
it has no out-of-order processing capability.

It may be necessary to do experiments in order to determine whether it is advantageous to
use simultaneous multithreading or not in a particular application.

See manual 1: "Optimizing software in C++" for more details on multithreading and
simultaneous multithreading.

15 CPU dispatching

If you are using instructions that are not supported by all microprocessors, then you must
first check if the program is running on a microprocessor that supports these instructions. If
your program can benefit significantly from using a particular instruction set, then you may
make one version of a critical part of the program that uses this instruction set, and another
version which is compatible with old microprocessors.

Manual 1 "Optimizing software in C++" chapter 13 has important advices on CPU
dispatching.

CPU dispatching can be implemented with branches or with a code pointer, as shown in the
following example.

Example 15.1. Function with CPU dispatching

MyFunction proc near
; Jump through pointer. The code pointer initially points to
; MyFunctionDispatch. MyFunctionDispatch changes the pointer
; so that it points to the appropriate version of MyFunction.
; The next time MyFunction is called, it Jjumps directly to
; the right version of the function

Jmp [MyFunctionPoint]

; Code for each version. Put the most probable version first:

MyFunctionAvVX:
; AVX version of MyFunction
ret
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MyFunctionSSE2:
; SSE2 version of MyFunction
ret

MyFunction386:
; Generic/80386 version of MyFunction
ret

MyFunctionDispatch:
; Detect which instruction set is supported.
; Function InstructionSet is in asmlib

call InstructionSet ; eax indicates instruction set
mov edx, offset MyFunction386
cmp eax, 4 ; eax >= 4 if SSE2
Jb DispEnd
mov edx, offset MyFunctionSSE2
cmp eax, 11 ; eax >= 11 if AVX
Jjb DispEnd
mov edx, offset MyFunctionAVX
DispEnd:
; Save pointer to appropriate version of MyFunction
mov [MyFunctionPoint], edx
Jmp edx ; Jump to this version
.data
MyFunctionPoint DD MyFunctionDispatch ; Code pointer
.code

MyFunction endp

The function Tnstructionset, which detects which instruction set is supported, is provided
in the library that can be downloaded from www.agner.org/optimize/asmlib.zip. Most
operating systems also have functions for this purpose. Obviously, it is recommended to
store the output from Instructionset rather than calling it again each time the information
is needed. See also www.agner.org/optimize/asmexamples.zip for detailed examples of
functions with CPU dispatching.

15.1 Checking for operating system support for XMM, YMM, and ZMM registers

Unfortunately, the information that can be obtained from the cpuIp instruction is not
sufficient for determining whether it is possible to use XMM registers. The operating system
has to save these registers during a task switch and restore them when the task is resumed.
The microprocessor can disable the use of the XMM registers in order to prevent their use
under old operating systems that do not save these registers. Operating systems that
support the use of XMM registers must set bit 9 of the control register cr4 to enable the use
of XMM registers and indicate its ability to save and restore these registers during task
switches. (Saving and restoring registers is actually faster when XMM registers are
enabled).

Unfortunately, the cr4 register can only be read in privileged mode. Application programs
therefore have a problem determining whether they are allowed to use the XMM registers or
not. According to official Intel documents, the only way for an application program to
determine whether the operating system supports the use of XMM registers is to try to
execute an XMM instruction and see if you get an invalid opcode exception. This is
ridiculous, because not all operating systems, compilers and programming languages
provide facilities for application programs to catch invalid opcode exceptions. The
advantage of using XMM registers evaporates completely if you have no way of knowing
whether you can use these registers without crashing your software.
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These serious problems led me to search for an alternative way of checking if the operating
system supports the use of XMM registers, and fortunately | have found a way that works
reliably. If XMM registers are enabled, then the Fxsave and FXRSTOR instructions can read
and modify the XMM registers. If XMM registers are disabled, then Fxsave and FXRSTOR
cannot access these registers. It is therefore possible to check if XMM registers are
enabled, by trying to read and write these registers with Fxsave and FXRSTOR. The
subroutines in www.agner.org/optimize/asmlib.zip use this method. These subroutines can
be called from assembly as well as from high-level languages, and provide an easy way of
detecting whether XMM registers can be used.

In order to verify that this detection method works correctly with all microprocessors, | first
checked various manuals. The 1999 version of Intel's software developer's manual says
about the FxrsTOR instruction: "The Streaming SIMD Extension fields in the save image
(XMMO-XMM7 and MXCSR) will not be loaded into the processor if the CR4.0OSFXSR bit is
not set." AMD's Programmer’s Manual says effectively the same. However, the 2003
version of Intel's manual says that this behavior is implementation dependent. In order to
clarify this, | contacted Intel Technical Support and got the reply, "If the OSFXSR bit in CR4
in not set, then XMMx registers are not restored when FXRSTOR is executed". They further
confirmed that this is true for all versions of Intel microprocessors and all microcode
updates. | regard this as a guarantee from Intel that my detection method will work on all
Intel microprocessors. We can rely on the method working correctly on AMD processors as
well since the AMD manual is unambiguous on this question. It appears to be safe to rely on
this method working correctly on future microprocessors as well, because any micropro-
cessor that deviates from the above specification would introduce a security problem as well
as failing to run existing programs. Compatibility with existing programs is of great concern
to microprocessor producers.

The detection method recommended in Intel manuals has the drawback that it relies on the
ability of the compiler and the operating system to catch invalid opcode exceptions. A
Windows application, for example, using Intel's detection method would therefore have to be
tested in all compatible operating systems, including various Windows emulators running
under a number of other operating systems. My detection method does not have this
problem because it is independent of compiler and operating system. My method has the
further advantage that it makes modular programming easier, because a module,
subroutine library, or DLL using XMM instructions can include the detection procedure so
that the problem of XMM support is of no concern to the calling program, which may even
be written in a different programming language. Some operating systems provide system
functions that tell which instruction set is supported, but the method mentioned above is
independent of the operating system.

It is easier to check for operating support for YMM and ZMM registers. Execute cpuiD with
eax = 1. Check that bit 27 and 28 in ecx are both 1 (OSXSAVE and AVX feature flags). If
so, then execute xGETBV with ecx = 0 to get the XSFEATURE_ENABLED_MASK. Check that
bit 1 and 2 in eax are both set (XMM and YMM state support). If so, then it is safe to use
YMM registers. ZMM registers are enabled if bit 5, 6, and 7 are also all set.

The above discussion has relied on the following documents:

Intel application note AP-900: "Identifying support for Streaming SIMD Extensions in the
Processor and Operating System". 1999.

Intel application note AP-485: "Intel Processor Identification and the CPUID Instruction”.
2002.

"Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference”,
1999.
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"IA-32 Intel Architecture Software Developer's Manual, Volume 2: Instruction Set
Reference”, 2003.

"Intel 64 and IA-32 Architectures Software Developer’s Manual", 2018.
"AMDG64 Architecture Programmer’s Manual, Volume 4: 128-Bit Media Instructions", 2003.

"Intel Advanced Vector Extensions Programming Reference", 2008, 2010.

16 Problematic Instructions

16.1 LEA instruction (all processors)

The LEA instruction is useful for many purposes because it can do a shift operation, two
additions, and a move in just one instruction. Example:

; Example 16.la, LEA instruction
lea eax, [ebx+8*ecx-1000]

is much faster than

; Example 16.1b
mov eax, ecx
shl eax, 3

add eax, ebx
sub eax, 1000

A typical use of LEA is as a three-register addition: lea eax, [ebx+ecx]. The LEA
instruction can also be used for doing an addition or shift without changing the flags.

The processors have no documented addressing mode with a scaled index register and
nothing else. Therefore, an instruction like lea eax, [ebx*2] is actually coded as 1ea
eax, [ebx*2+00000000H] with an immediate displacement of 4 bytes. The size of this
instruction can be reduced by writing 1ea eax, [ebx+ebx]. If you happen to have a register
that is zero (like a loop counter after a loop) then you may use it as a base register to
reduce the code size:

; Example 16.2, LEA instruction without base pointer
lea eax, [ebx*4] ;7 bytes
lea eax, [ecxtebx*4] ; 3 bytes

The size of the base and index registers can be changed with an address size prefix. The
size of the destination register can be changed with an operand size prefix (See prefixes,
page 26). If the operand size is less than the address size then the result is truncated. If the
operand size is more than the address size then the result is zero-extended.

The shortest version of 1.E2 in 64-bit mode has 32-bit operand size and 64-bit address size,
e.J. LEA EAX, [RBX+RCX], See page 77. Use this version when the result is sure to be less
than 232, Use the version with a 64-bit destination register for address calculation in 64-bit
mode when the address may be bigger than 2%

LEA Is slower than addition on some processors. The more complex forms of LA with scale

factor and offset are slower than the simple form on some processors. See manual 4:
"Instruction tables" for details on each processor.
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The preferred version in 32-bit mode has 32-bit operand size and 32-bit address size. 1L.EA
with a 16-bit operand size is slow on AMD processors. 1.2 with a 16-bit address size in 32-
bit mode should be avoided because the decoding of the address size prefix is slow on
many processors.

LEA can also be used in 64-bit mode for loading a RIP-relative address. A RIP-relative
address cannot be combined with base or index registers.

16.2 INC and DEC

The 1nc and pec instructions do not modify the carry flag but they do modify the other
arithmetic flags. Writing to only part of the flags register costs an extra pop on P4 and P4E.
It can cause a partial flags stalls on some Intel processors if a subsequent instruction reads
the carry flag or all the flag bits. On all processors, it can cause a false dependence on the
carry flag from a previous instruction.

Use apDp and suB when optimizing for speed. Use 1nc and pec when optimizing for size or
when no penalty is expected.

16.3 XCHG (all processors)

The XCHG register, [memory] instruction is dangerous. This instruction always has an
implicit Lock prefix which forces synchronization with other processors or cores. This
instruction is therefore very time consuming, and should always be avoided unless the lock
is intended.

The xcHG instruction with register operands may be useful when optimizing for size as
explained on page 73.

16.4 Shifts and rotates (P4)

Shifts and rotates on general purpose registers are slow on the P4. You may consider using
MMX or XMM registers instead or replacing left shifts by additions.

16.5 Rotates through carry (all processors)

RCR and rRcL with cL or with a count different from one are slow on all processors and
should be avoided.

16.6 Bit test (all processors)

BT, BTC, BTR, and BTS instructions should preferably be replaced by instructions like TEsT,
AND, OR, XOR, or shifts on older processors. Bit tests with a memory operand should be
avoided on Intel processors. BTC, BTR, and BTS use 2 pops on AMD processors. Bit test
instructions are useful when optimizing for size.

16.7 LAHF and SAHF (all processors)
LAHF is slow on P4 and P4E. Use seTcc instead for storing the value of a flag.

SAHF is slow on P4E and AMD processors. Use TEST instead for testing a bit in ~1. Use
rcoMT if available as a replacement for the sequence rcom / FNSTSW AX |/ SAHF.

LAHF and saHF are not available in 64 bit mode on some early 64-bit Intel processors.
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16.8 Integer multiplication (all processors)

An integer multiplication takes from 3 to 14 clock cycles, depending on the processor. It is
therefore often advantageous to replace a multiplication by a constant with a combination of
other instructions such as suL, ADD, SUB, and LEA. For example IMUL EAX, 5 can be
replaced by LEA EAX, [EAX+4*EAX].

16.9 Division (all processors)

Both integer division and floating point division are quite time consuming on all processors.
Various methods for reducing the number of divisions are explained in manual 1:
"Optimizing software in C++". Several methods to improve code that contains division are
discussed below.

Integer division by a power of 2 (all processors)

Integer division by a power of two can be done by shifting right. Dividing an unsigned
integer by 2N:

; Example 16.3. Divide unsigned integer by 2”N
shr eax, N

Dividing a signed integer by 2":

; Example 16.4. Divide signed integer by 27N
cdqg

and edx, (1 shl N) -1 ; (Or: shr edx,32-N)
add eax, edx

sar eax, N

Obviously, you should prefer the unsigned version if the dividend is certain to be non-
negative.

Integer division by a constant (all processors)

A floating point number can be divided by a constant by multiplying with the reciprocal. If we
want to do the same with integers, we have to scale the reciprocal by 2" and then shift the
product to the right by n. There are various algorithms for finding a suitable value of n and
compensating for rounding errors. The algorithm described below was invented by Terje
Mathisen, Norway, and not published elsewhere. Other methods can be found in the book
Hacker's Delight, by Henry S. Warren, Addison-Wesley 2003, and the paper: T. Granlund
and P. L. Montgomery: Division by Invariant Integers Using Multiplication, Proceedings of
the SIGPLAN 1994 Conference on Programming Language Design and Implementation.

The following algorithm will give you the correct result for unsigned integer division with
truncation, i.e. the same result as the p1v instruction:

b = (the number of significant bits in d) - 1

r=w+b

f=2"/d

If f is an integer then d is a power of 2: go to case A.

If f is not an integer, then check if the fractional part of fis < 0.5
If the fractional part of f < 0.5: go to case B.

If the fractional part of f > 0.5: go to case C.

case A (d =2h):
result=x SHR b

case B (fractional part of f < 0.5):
round f down to nearest integer
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result = ((x+1) *f) SHR r

case C (fractional part of f > 0.5):
round f up to nearest integer
result=(x*f) SHR r

Example:

Assume that you want to divide by 5.

5=101B.

w = 32.

b = (number of significant binary digits) - 1 = 2

r=32+2=34

f=23%/5=3435973836.8 = 0CCCCCCCC.CCC...(hexadecimal)

The fractional part is greater than a half: use case C.
Round f up to 0OCCCCCCCDH.

The following code divides £ax by 5 and returns the result in Epx:

; Example 16.5a. Divide unsigned integer eax by 5
mov edx, 0CCCCCCCDH

mul edx

shr edx, 2

After the multiplication, Epx contains the product shifted right 32 places. Since r = 34 you
have to shift 2 more places to get the result. To divide by 10, just change the last line to sHr
EDX, 3.

In case B we would have:

; Example 16.5b. Divide unsigned integer eax, case B
add eax, 1

mov edx, f

mul edx

shr edx, b

This code works for all values of x except OFFFFFFFFH which gives zero because of
overflow in the ApD Eax, 1 instruction. If x = OFFFFFFFFH is possible, then change the code
to:

; Example 16.5c. Divide unsigned integer, case B, check for overflow

mov edx, f
add eax, 1
jc DOVERFL
mul edx
DOVERFL: shr edx, b

If the value of x is limited, then you may use a lower value of r, i.e. fewer digits. There can
be several reasons for using a lower value of r:

e You may set r =w = 32 to avoid the sHrR EDX, b in the end.

e You may set r = 16+b and use a multiplication instruction that gives a 32-bit result
rather than 64 bits. This will free the eDx register:

; Example 16.5d. Divide unsigned integer by 5, limited range
imul eax, OCCCDH
shr eax, 18
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¢ You may choose a value of r that gives case C rather than case B in order to avoid
the DD EAX, 1 instruction

The maximum value for x in these cases is at least 2™-1, sometimes higher. You have to do
a systematic test if you want to know the exact maximum value of x for which the code
works correctly.

You may want to replace the multiplication instruction with shift and add instructions as
explained on page 148 if multiplication is slow.

The following example divides eax by 10 and returns the result in Eax. | have chosen r=17
rather than 19 because it happens to give code that is easier to optimize, and covers the
same range for x. f = 27/ 10 = 3333H, case B: q = (x+1)*3333H:

; Example 16.5e. Divide unsigned integer by 10, limited range

lea ebx, [eax+2*eax+3]
lea ecx, [eax+2*eax+3]
shl ebx, 4

mov eax, ecx

shl ecx, 8

add eax, ebx

shl ebx, 8

add eax, ecx

add eax, ebx

shr eax, 17

A systematic test shows that this code works correctly for all x < 10004H.

The division method can also be used for vector operands. Example 16.5f divides eight
unsigned 16-bit integers by 10:

; Example 16.5f. Divide vector of unsigned integers by 10

.data

align 16

RECIPDIV DW 8 dup (OCCCDH) ; Vector of reciprocal divisor
.code

pmulhuw xmmO, RECIPDIV

psrlw xmm0, 3

Repeated integer division by the same value (all processors)

If the divisor is not known at assembly time, but you are dividing repeatedly with the same
divisor, then it is advantageous to use the same method as above. The division is done only
once while the multiplication and shift operations are done for each dividend. A branch-free
variant of the algorithm is provided in the paper by Granlund and Montgomery cited above.

This method is implemented in the asmlib function library for signed and unsigned integers
as well as for vector registers.

Floating point division (all processors)

Two or more floating point divisions can be combined into one, using the method described
in manual 1: "Optimizing software in C++".

The time it takes to make a floating point division depends on the precision. When x87 style
floating point registers are used, you can make division faster by specifying a lower
precision in the floating point control word. This also speeds up the FsorT instruction, but
not any other instructions. When XMM registers are used, you don't have to change any
control word. Just use single-precision instructions if your application allows this.
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It is not possible to do a floating point division and an integer division at the same time
because they are using the same execution unit on most processors.

Using reciprocal instruction for fast division (processors with SSE)

On processors with the SSE instruction set, you can use the fast reciprocal instruction
RCPSS Or RCPPS on the divisor and then multiply with the dividend. However, the precision is
only 12 bits. You can increase the precision to 23 bits by using the Newton-Raphson
method described in Intel's application note AP-803:

x0 rcpss (d) ;
xl = x0 * (2 - d * x0) =2 * x0 - d * x0 * x0;

where %0 is the first approximation to the reciprocal of the divisor d, and x1 is a better
approximation. You must use this formula before multiplying with the dividend.

; Example 16.6, fast division, single precision (SSE)

movaps xmml, [divisors] ; load divisors

rcpps xmm0, xmml ; approximate reciprocal
mulps xmml, xmmO ; newton-raphson formula
mulps xmml, xmmO

addps xmm0, xmmO

subps xmm0, xmml

mulps xmm0, [dividends] ; results in xmmO

This makes four divisions in approximately 18 clock cycles on a Core 2 with a precision of
23 hits. Increasing the precision further by repeating the Newton-Raphson formula with
double precision is possible, but not very advantageous.

16.10 String instructions (all processors)

String instructions without a repeat prefix are too slow and should be replaced by simpler
instructions. The same applies to Loop on all processors and to JECXz On SOMe pProcessors.

REP MOVSD and REP STOSD are quite fast if the repeat count is not too small. Always use
the largest word size possible (DworD in 32-bit mode, oworD in 64-bit mode), and make sure
that both source and destination are aligned by the word size. In many cases, however, it is
faster to use XMM registers. Moving data in XMM registers is faster than rep mMovsp and
REP STOSD in most cases, especially on older processors. See page 164 for details.

Note that while the rREp MoVS instruction writes a word to the destination, it reads the next
word from the source in the same clock cycle. You can have a cache bank conflict if bit 2-4
are the same in these two addresses on P2 and P3. In other words, you will get a penalty of
one clock extra per iteration if EST+WORDSIZE-EDT is divisible by 32. The easiest way to
avoid cache bank conflicts is to align both source and destination by 8. Never use Movss or
MOVSW in optimized code, not even in 16-bit mode.

On many processors, REP MOVS and REP sTOS can perform fast by moving 16 bytes or an
entire cache line at a time. This happens only when certain conditions are met. Depending
on the processor, the conditions for fast string instructions are, typically, that the count must
be high, both source and destination must be aligned, the direction must be forward, the
distance between source and destination must be at least the cache line size, and the
memory type for both source and destination must be either write-back or write-combining
(you can normally assume the latter condition is met).

Under these conditions, the speed is as high as you can obtain with vector register moves
or even faster on some processors.
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While the string instructions can be quite convenient, it must be emphasized that other
solutions are faster in many cases. If the above conditions for fast move are not met then
there is a lot to gain by using other methods. See page 164 for alternatives to REP MOVS.

REP LOADS, REP SCAS, and rREp cMPs take more time per iteration than simple loops. See
page 141 for alternatives to REPNE SCASB.

16.11 Vectorized string instructions (processors with SSE4.2)

The SSE4.2 instruction set contains four very efficient instructions for string search and
compare operations: PCMPESTRI, PCMPTSTRI, PCMPESTRM, PCMPTSTRM. There are two vector
operands each containing a string and an immediate operand determining what operation to
do on these strings. These four instructions can all do each of the following kinds of
operations, differing only in the input and output operands:

¢ Find characters from a set: Finds which of the bytes in the second vector operand
belong to the set defined by the bytes in the first vector operand, comparing all 256
possible combinations in one operation.

¢ Find characters in a range: Finds which of the bytes in the second vector operand
are within the range defined by the first vector operand.

e Compare strings: Determine if the two strings are identical.

e Substring search: Finds all occurrences of a substring defined by the first vector
operand in the second vector operand.

The lengths of the two strings can be specified explicitly (pcMPESTRx) or implicitly with a
terminating zero (PCMPISTRx). The latter is faster on current Intel processors because it has
fewer input operands. Any terminating zeroes and bytes beyond the ends of the strings are
ignored. The output can be a bit mask or byte mask (pcMpxsTRrM) Or an index (PCMPxSTRT).
Further output is provided in the following flags. Carry flag: result is nonzero. Sign flag: first
string ends. Zero flag: second string ends. Overflow flag: first bit of result.

These instructions are very efficient for various string parsing and processing tasks because
they do large and complicated tasks in a single operation. However, the current
implementations are slower than the best alternatives for simple tasks such as strlen and
strcopy.

Examples can be found in my function library at www.agner.org/optimize/asmlib.zip.

16.12 WAIT instruction (all processors)

You can often increase speed by omitting the watT instruction (also known as FwatT). The
WAIT instruction has three functions:

A. The old 8087 processor requires a wa1T before every floating point instruction to make
sure the coprocessor is ready to receive it.

B. watT is used for coordinating memory access between the floating point unit and the
integer unit. Examples:

; Example 16.7. Uses of WAIT:

Bl: fistp [mem32]

wait ; wait for FPU to write before..

mov eax, [mem32] ; reading the result with the integer unit
B2: fild [mem32]

wait ; wait for FPU to read value..

mov [mem32],eax ; before overwriting it with integer unit
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B3: fld gword ptr [ESP]
wait ; prevent an accidental interrupt from..
add esp, 8 ; overwriting value on stack

C. waIT is sometimes used to check for exceptions. It will generate an interrupt if an
unmasked exception bit in the floating point status word has been set by a preceding
floating point instruction.

Regarding A:
The functionality in point A is never needed on any other processors than the old 8087.

Unless you want your 16-bit code to be compatible with the 8087, you should tell your
assembler not to put in these wa1T's by specifying a higher processor. An 8087 floating
point emulator also inserts wa1T instructions. You should therefore tell your assembler not to
generate emulation code unless you need it.

Regarding B:
WAIT instructions to coordinate memory access are definitely needed on the 8087 and

80287 but not on the Pentiums. It is not quite clear whether it is needed on the 80387 and
80486. | have made several tests on these Intel processors and not been able to provoke
any error by omitting the wazT on any 32-bit Intel processor, although Intel manuals say that
the waTT is needed for this purpose except after FnsTsw and FNsTCW. Omitting WATT
instructions for coordinating memory access is not 100 % safe, even when writing 32-bit
code, because the code may be able to run on the very rare combination of a 80386 main
processor with a 287 coprocessor, which requires the watT. Also, | have no information on
non-Intel processors, and | have not tested all possible hardware and software
combinations, so there may be other situations where the wa1T is needed.

If you want to be certain that your code will work on even the oldest 32-bit processors then |
would recommend that you include the wa1T here in order to be safe. If rare and obsolete
hardware platforms such as the combination of 80386 and 80287 can be ruled out, then you
may omit the waATT.

Regarding C:
The assembler automatically inserts a wa1T for this purpose before the following

instructions: FCLEX, FINIT, FSAVE, FSTCW, FSTENV, FSTSW. YOU can omit the warT by writing
FNCLEX, etc. My tests show that the waA1T is unnecessary in most cases because these
instructions without wa1T will still generate an interrupt on exceptions except for FNCLEX and
FNINIT on the 80387. (There is some inconsistency about whether the 1reT from the
interrupt points to the FN. . instruction or to the next instruction).

Almost all other floating point instructions will also generate an interrupt if a previous floating
point instruction has set an unmasked exception bit, so the exception is likely to be detected
sooner or later anyway. You may insert a waIT after the last floating point instruction in your
program to be sure to catch all exceptions.

You may still need the watT if you want to know exactly where an exception occurred in
order to be able to recover from the situation. Consider, for example, the code under B3
above: If you want to be able to recover from an exception generated by the r1.D here, then
you need the watT because an interrupt after Abp Esp, 8 might overwrite the value to load.
FNOP may be faster than waTT on some processors and serve the same purpose.

16.13 FCOM + FSTSW AX (all processors)

The rFnsTsw instruction is very slow on all processors. Most processors have FcoMT
instructions to avoid the slow FnsTsw. Using FcomT instead of the common sequence Fcom /
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FNsTSW Ax [ SAHF will save 4 - 8 clock cycles. You should therefore use rcowmI to avoid
FNSTSW wherever possible, even in cases where it costs some extra code.

On P1 and PMMX processors, which don't have rcom1 instructions, the usual way of doing
floating point comparisons is:

; Example 16.8a.

fld [a]

fcomp [Db]

fstsw ax

sahf

Jb ASmallerThanB

You may improve this code by using FNsTsw aXx rather than FsTsw ax and test A= directly
rather than using the non-pairable sanr:

; Example 16.8b.

fld [a]

fcomp [b]

fnstsw ax

shr ah,1

Jjc ASmallerThanB

Testing for zero or equality:

; Example 16.8c.

ftst

fnstsw ax

and ah, 40H ; Don't use TEST instruction, it's not pairable
Jnz IsZero ; (the zero flag is inverted!)

Test if greater:

; Example 16.8d.

fld [a]

fcomp [Db]

fnstsw ax

and ah, 41H

Jjz AGreaterThanB

On the P1 and PMMX, the FnsTsw instruction takes 2 clocks, but it is delayed for an
additional 4 clocks after any floating point instruction because it is waiting for the status
word to retire from the pipeline. You may fill this gap with integer instructions.

It is sometimes faster to use integer instructions for comparing floating point values, as
described on page 162 and 164.

16.14 FPREM (all processors)

The rpPrEM and FPREM1 instructions are slow on all processors. You may replace it by the
following algorithm: Multiply by the reciprocal divisor, get the fractional part by subtracting
the truncated value, and then multiply by the divisor. (See page 160 on how to truncate on
processors that don't have truncate instructions).

Some documents say that these instructions may give incomplete reductions and that it is
therefore necessary to repeat the FpPrREM Or FPREM1 instruction until the reduction is
complete. | have tested this on several processors beginning with the old 8087 and | have
found no situation where a repetition of the FPrREM Or FPREM1 Was needed.
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16.15 FRNDINT (all processors)
This instruction is slow on all processors. Replace it by:

; Example 16.9.
fistp gword ptr [TEMP]
fild gword ptr [TEMP]

This code is faster despite a possible penalty for attempting to read from [TEvmP] before the
write is finished. It is recommended to put other instructions in between in order to avoid this
penalty. See page 160 on how to truncate on processors that don't have truncate
instructions. On processors with SSE instructions, use the conversion instructions such as
CvTss2sT and CVTTSS2ST.

16.16 FSCALE and exponential function (all processors)

FSCALE is slow on all processors. Computing integer powers of 2 can be done much faster
by inserting the desired power in the exponent field of the floating point number. To
calculate 2N, where N is a signed integer, select from the examples below the one that fits
your range of N:

For [N| < 27-1 you can use single precision:

; Example 16.10a.

mov eax, [N]

shl eax, 23

add eax, 3f800000h

mov dword ptr [TEMP], eax
fld dword ptr [TEMP]

For [N] < 2%°-1 you can use double precision:

; Example 16.10b.

mov eax, [N]

shl eax, 20

add eax, 3ff00000h

mov dword ptr [TEMP], O

mov dword ptr [TEMP+4], eax
fld gword ptr [TEMP]

For [N| < 2!4-1 use long double precision:

; Example 16.10c.

mov eax, [N]

add eax, 00003fffh

mov dword ptr [TEMP], 0

mov dword ptr [TEMP+4], 80000000h
mov dword ptr [TEMP+8], eax

fld tbyte ptr [TEMP]

On processors with SSE2 instructions, you can make these operations in XMM registers
without the need for a memory intermediate (see page 163).

FSCALE IS often used in the calculation of exponential functions. The following code shows
an exponential function without the slow FRNDINT and FSCALE instructions:

; Example 16.11. Exponential function
; extern "C" long double exp (double x);

_exp PROC NEAR
PUBLIC  exp
fldlz2e
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fld gword ptr [esp+t4] ;X

fmul ; z = x*log2(e)
fist dword ptr [esp+4] ; round(z)
sub esp, 12
mov dword ptr [esp]l, O
mov dword ptr [esp+4], 80000000h
fisub dword ptr [esp+16] ; z - round(z)
mov eax, [esptl6]
add eax,3fffh
mov [esp+8],eax
jle short UNDERFLOW
cmp eax, 8000h
jge short OVERFLOW
f2xml
fld1l
fadd ; 2% (z-round(z))
fld tbyte ptr [esp] ; 2% (round(z))
add esp,12
fmul ; 2%z = e”™x
ret
UNDERFLOW :
fstp st
fldz ; return 0O
add esp, 12
ret
OVERFLOW :

push 07£800000h ; +infinity
fstp st
fld dword ptr [esp] ; return infinity
add esp, 16
ret

exp ENDP

16.17 FPTAN (all processors)

According to the manuals, FpTAN returns two values, X and Y, and leaves it to the
programmer to divide Y with X to get the result; but in fact it always returns 1 in X so you can
save the division. My tests show that on all 32-bit Intel processors with floating point unit or
coprocessor, FPTAN always returns 1 in X regardless of the argument. If you want to be
absolutely sure that your code will run correctly on all processors, then you may test if X is
1, which is faster than dividing with X. The Y value may be very high, but never infinity, so
you don't have to test if Y contains a valid number if you know that the argument is valid.

16.18 FSQRT (SSE processors)

A fast way of calculating an approximate square root on processors with SSE is to multiply
the reciprocal square root of x by x:

sgrt(x) = x * rsqgrt(x)

The instruction RSQRTSS Or RSQRTPS gives the reciprocal square root with a precision of 12
bits. You can improve the precision to 23 bits by using the Newton-Raphson formula
described in Intel's application note AP-803:

x0 rsqgrtss(a)
xl = 0.5 * xO0 * (3 - (a * x0) * x0)

where x0 is the first approximation to the reciprocal square root of a, and x1 is a better
approximation. The order of evaluation is important. You must use this formula before
multiplying with a to get the square root.
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16.19 FLDCW (Most Intel processors)

Many processors have a serious stall after the rLocw instruction if followed by any floating
point instruction which reads the control word (which almost all floating point instructions
do).

When C or C++ code is compiled, it often generates a lot of F1.Dcw instructions because
conversion of floating point numbers to integers is done with truncation while other floating
point instructions use rounding. After translation to assembly, you can improve this code by
using rounding instead of truncation where possible, or by moving the r1.ocw out of a loop
where truncation is needed inside the loop.

On the P4, this stall is even longer, approximately 143 clocks. But the P4 has made a
special case out of the situation where the control word is alternating between two different
values. This is the typical case in C++ programs where the control word is changed to
specify truncation when a floating point number is converted to integer, and changed back
to rounding after this conversion. The latency for rLocw is 3 when the new value loaded is
the same as the value of the control word before the preceding Frocw. The latency is still
143, however, when loading the same value into the control word as it already has, if this is
not the same as the value it had one time eatrlier.

See page 160 on how to convert floating point numbers to integers without changing the
control word. On processors with SSE, use truncation instructions such as cvrrss2sz
instead.

16.20 MASKMOV instructions

The masked memory write instructions MASKMOVQ and MASKMOVDQU are extremely slow
because they are bypassing the cache and writing to main memory (a so-called non-
temporal write).

The VEX-coded alternatives vPMASKMOVD, VPMASKMOVQ, VMASKMOVPS, VMASKMOVPD are
writing to the cache, and therefore much faster on Intel processors. The VEX versions are
still extremely slow on AMD Bulldozer and Piledriver processors.

These instructions should be avoided at all costs. See chapter 13.9 for alternative methods.

17 Special topics

17.1 XMM versus floating point registers
Processors with the SSE instruction set can do single precision floating point calculations in

XMM registers. Processors with the SSE2 instruction set can also do double precision
calculations in XMM registers. Floating point calculations are approximately equally fast in
XMM registers and the old floating point stack registers. The decision of whether to use the
floating point stack registers st (0) - sT (7) or XMM registers depends on the following
factors.
Advantages of using ST() registers:

e Compatible with old processors without SSE or SSE2.

o Compatible with old operating systems without XMM support.

e Supports long double precision.
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¢ Intermediate results are calculated with long double precision.

e Precision conversions are free in the sense that they require no extra instructions
and take no extra time. You may use ST() registers for expressions where operands
have mixed precision.

e Mathematical functions such as logarithms and trigonometric functions are
supported by hardware instructions. These functions are useful when optimizing for
size, but not necessarily faster than library functions using XMM registers.

e Conversions to and from decimal numbers can use the FBLD and FBSTP instructions
when optimizing for size.

e Floating point instructions using ST() registers are smaller than the corresponding
instructions using XMM registers. For example, FADD ST (0),ST (1) is 2 bytes,
while ApDSD xMMO, xMM1 IS 4 bytes.

Advantages of using XMM or YMM registers:

¢ Can do multiple operations with a single vector instruction.

¢ Avoids the need to use rxcH for getting the desired register to the top of the stack.

¢ No need to clean up the register stack after use.

e Can be used together with MMX instructions.

¢ No need for memory intermediates when converting between integers and floating
point numbers.

e 64-bit systems have 16 XMM/YMM registers, but only 8 ST() registers.
e ST() registers cannot be used in device drivers in 64-bit Windows.
e The instruction set for ST() registers is no longer developed. The instructions will

probably still be supported for many years for the sake of backwards compatibility,
but the instructions may work less efficiently in future processors.

17.2 MMX versus XMM registers

Integer vector instructions can use either the 64-bit MMX registers or the 128-bit XMM
registers in processors with SSE2.

Advantages of using MMX registers:
¢ Compatible with older microprocessors since the PMMX.
o Compatible with old operating systems without XMM support.
¢ No need for data alignment.

Advantages of using XMM registers:

e The number of elements per vector is doubled in XMM registers as compared to
MMX registers.
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o MMX registers cannot be used together with ST() registers.

e A series of MMX instructions must end with EMMS.

e 64-bit systems have 16 XMM registers, but only 8 MMX registers.

e MMX registers cannot be used in device drivers in 64-bit Windows.

e The instruction set for MMX registers is no longer developed and is going out of use.

The MMX registers will probably still be supported in many years for reason of
backwards compatibility.

17.3 XMM versus YMM registers

Floating point vector instructions can use the 128-bit XMM registers or their 256-bit
extension named YMM registers when the AVX instruction set is available. See page 117
for details. Advantages of using the AVX instruction set and YMM registers:

¢ Double vector size for floating point operations
e Non-destructive 3-operand version of all XMM and YMM instructions
Advantages of using XMM registers:

e Compatible with older processors

e There is a penalty for switching between VEX instructions and XMM instructions
without VEX prefix, see page 118. The programmer may inadvertently mix VEX and
non-VEX instructions.

e YMM registers cannot be used in device drivers without saving everything with

XSAVE [ XRESTOR., See page 121.

17.4 Freeing floating point registers (all processors)

You have to free all used floating point stack registers before exiting a subroutine, except
for any register used for the result.

The fastest way of freeing one register is rsTp sT. To free two registers you may use either
FCOMPP Or twice FsTP sT, whichever fits best into the decoding sequence or port load.

It is not recommended to use FFREE.

17.5 Transitions between floating point and MMX instructions

It is not possible to use 64-bit MMX registers and 80-bit floating point ST() registers in the
same part of the code. You must issue an EmMMsS instruction after the last instruction that uses
MMX registers if there is a possibility that later code uses floating point registers. You may
avoid this problem by using 128-bit XMM registers instead.

On PMMX there is a high penalty for switching between floating point and MMX instructions.
The first floating point instruction after an evMMs takes approximately 58 clocks extra, and the
first MMX instruction after a floating point instruction takes approximately 38 clocks extra.

On processors with out-of-order execution there is no such penalty.
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17.6 Converting from floating point to integer (All processors)

All conversions between floating point registers and integer registers must go via a memory
location:

; Example 17.1.
fistp dword ptr [TEMP]
mov eax, [TEMP]

On older processors, and especially the P4, this code is likely to have a penalty for
attempting to read from [TEvMP] before the write to [TEMP] is finished. It doesn't help to put
in a waIT. It is recommended that you put in other instructions between the write to [TEMP]
and the read from [TEMP] if possible in order to avoid this penalty. This applies to all the
examples that follow.

The specifications for the C and C++ language requires that conversion from floating point
numbers to integers use truncation rather than rounding. The method used by most C
libraries is to change the floating point control word to indicate truncation before using an
FISTP instruction, and changing it back again afterwards. This method is very slow on all
processors. On many processors, the floating point control word cannot be renamed, so all
subsequent floating point instructions must wait for the Fr.nocw instruction to retire. See page
157.

On processors with SSE or SSE2 instructions you can avoid all these problems by using
XMM registers instead of floating point registers and use the cvrT. . instructions to avoid the
memory intermediate.

Whenever you have a conversion from a floating point register to an integer register, you
should think of whether you can use rounding to nearest integer instead of truncation.

If you need truncation inside a loop then you should change the control word only outside
the loop if the rest of the floating point instructions in the loop can work correctly in
truncation mode.

You may use various tricks for truncating without changing the control word, as illustrated in
the examples below. These examples presume that the control word is set to default, i.e.
rounding to nearest or even.

; Example 17.2a. Rounding to nearest or even:
; extern "C" int round (double x);

_round PROC NEAR ; (32 bit mode)
PUBLIC  round
fld gword ptr [esp+4]
fistp dword ptr [esp+t4]
mov eax, dword ptr [espt4]
ret

_round ENDP

; Example 17.2b. Truncation towards zero:
; extern "C" int truncate (double x);

__truncate PROC NEAR ; (32 bit mode)
PUBLIC  truncate
fld gword ptr [esp+4] ;X
sub esp, 12 ; space for local variables
fist dword ptr [esp] ; rounded value
fst dword ptr [espt4] ; float wvalue
fisub dword ptr [esp] ; subtract rounded value
fstp dword ptr [esp+8] ; difference
pop eax ; rounded value
pop ecx ; float value
pop edx ; difference (float)
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test ecx, ecx ; test sign of x

Js short NEGATIVE
add edx, T7FFFFFFFH ; produce carry if difference < -0
sbb eax, O ; subtract 1 if x-round(x) < -0
ret
NEGATIVE:
XOr ecx, ecx
test edx, edx
setg cl ; 1 if difference > 0
add eax, ecx ; add 1 if x-round(x) > 0
ret

_truncate ENDP

; Example 17.2c. Truncation towards minus infinity:
; extern "C" int ifloor (double x);

_ifloor PROC NEAR ; (32 bit mode)
PUBLIC ifloor
fld gword ptr [esp+4] ;X
sub esp, 8 ; space for local variables
fist dword ptr [esp] ; rounded value
fisub dword ptr [esp] ; subtract rounded value
fstp dword ptr [esp+4] ; difference
pop eax ; rounded value
pop edx ; difference (float)
add edx, T7FFFFFFFH ; produce carry if difference < -0
sbb eax, O ; subtract 1 if x-round(x) < -0
ret

_ifloor ENDP

These procedures work for -23! < x < 231-1. They do not check for overflow or NAN's.

17.7 Using integer instructions for floating point operations

Integer instructions are generally faster than floating point instructions, so it is often
advantageous to use integer instructions for doing simple floating point operations. The
most obvious example is moving data. For example

; Example 17.3a. Moving floating point data
fld gword ptr [esi]
fstp gword ptr [edi]

can be replaced by:

; Example 17.3b
mov eax, [esi]
mov ebx, [esi+4]
mov [edi],eax
mov [edi+4],ebx

or:
; Example 17.3c

movqg mm0, [esi]
movqg [edi],mmO

In 64-bit mode, use:
; Example 17.3d

mov rax, [rsi]
mov [rdi],rax
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Many other manipulations are possible if you know how floating point numbers are
represented in binary format. See the chapter "Using integer operations for manipulating
floating point variables" in manual 1: "Optimizing software in C++".

The bit positions are shown in this table:

precision mantissa always 1 exponent sign

single (32 bits) bit 0 - 22 bit 23 - 30 bit 31
double (64 bits) bit 0 - 51 bit 52 - 62 bit 63
long double (80 bits) | bit 0 - 62 bit 63 bit 64 - 78 bit 79

Table 17.1. Floating point formats

From this table we can find that the value 1.0 is represented as 3F80,0000H in single
precision format, 3FF0,0000,0000,0000H in double precision, and
3FFF,8000,0000,0000,0000H in long double precision.

It is possible to generate simple floating point constants without using data in memory as
explained on page 134.

Testing if a floating point value is zero

To test if a floating point number is zero, we have to test all bits except the sign bit, which
may be either O or 1. For example:

; Example 17.4a. Testing floating point value for zero
fld dword ptr [ebx]

ftst

fnstsw ax

and ah, 40h
jnz IsZero

can be replaced by

; Example 17.4b. Testing floating point wvalue for zero

mov eax, [ebx]
add eax, eax
jz IsZero

where the ApD EAX, EAX shifts out the sign bit. Double precision floats have 63 bits to test,
but if subnormal numbers can be ruled out, then you can be certain that the value is zero if
the exponent bits are all zero. Example:

; Example 17.4c. Testing double value for zero
fld gword ptr [ebx]

ftst

fnstsw ax

and ah, 40h

jnz IsZero

can be replaced by

; Example 17.4d. Testing double value for zero

mov eax, [ebx+4]
add eax,eax
Jjz IsZero

Manipulating the sign bit

A floating point number is negative if the sign bit is set and at least one other bit is set.
Example (single precision):
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; Example 17.5. Testing floating point value for negative

mov eax, [NumberToTest]
cmp eax, 80000000H
Jja IsNegative

You can change the sign of a floating point number simply by flipping the sign bit. This is
useful when XMM registers are used, because there is no XMM change sign instruction.
Example:

; Example 17.6. Change sign of four single-precision floats in xmmO

cmpeqgd xmml, xmml ; generate all 1's
pslld xmml, 31 ; 1 in the leftmost bit of each dword only
xorps xmmO, xmml ; change sign of xmmO

You can get the absolute value of a floating point number by AND'ing out the sign bit:

; Example 17.7. Absolute value of four single-precision floats in xmmO

cmpeqgd xmml, xmml ; generate all 1's
psrld xmml,1 ; 1 in all but the leftmost bit of each dword
andps xmmO , xmml ; set sign bits to 0

You can extract the sign bit of a floating point number:

; Example 17.8. Generate a bit-mask if single-precision floats in
; xmm0 are negative or -0.0
psrad xmm0, 31 ; copy sign bit into all bit positions

Manipulating the exponent
You can multiply a non-zero number by a power of 2 by simply adding to the exponent:

; Example 17.9. Multiply vector by power of 2

movaps xmm0, [x] ; four single-precision floats
movdga xmml, [n] ; four 32-bit positive integers
pslld xmml, 23 ; shift integers into exponent field
paddd xmm0O, xmml ; x * 2%n

Likewise, you can divide by a power of 2 by subtracting from the exponent. Note that this
code does not work if x is zero or if overflow or underflow is possible.

Manipulating the mantissa

You can convert an integer to a floating point number in an interval of length 1.0 by putting
bits into the mantissa field. The following code computes x = n/ 232, where n in an unsigned
integer in the interval 0 < n < 2%2, and the resulting x is in the interval 0 < x < 1.0.

; Example 17.10. Convert bits to value between 0 and 1

.data

one dg 1.0

X dg ?

n dd ?

.code

movsd xmmO, [one] ; 1.0, double precision

movd xmml, [n] ; n, 32-bit unsigned integer
psllg xmml, 20 ; align n left in mantissa field
orpd xmml, xmmO ; combine mantissa and exponent
subsd xmml, xmmO ; subtract 1.0

movsd [x], xmm1l ; sStore result
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In the above code, the exponent from 1.0 is combined with a mantissa containing the bits of
n. This gives a double-precision value in the interval 1.0 < x < 2.0. The suBsD instruction
subtracts 1.0 to get x into the desired interval. This is useful for random number generators.

Comparing numbers

Thanks to the fact that the exponent is stored in the biased format and to the left of the
mantissa, it is possible to use integer instructions for comparing positive floating point
numbers. Example (single precision):

; Example 17.11a. Compare single precision float numbers
fld [a]

fcomp [Db]

fnstsw ax

and ah, 1

Jnz ASmallerThanB

can be replaced by:

; Example 17.11lb. Compare single precision float numbers
mov eax, [al

mov ebx, [b]

cmp eax, ebx

Jb ASmallerThanB

This method works only if you are certain that none of the numbers have the sign bit set.
You may compare absolute values by shifting out the sign bit of both numbers. For double-
precision numbers, you can make an approximate comparison by comparing the upper 32
bits using integer instructions.

17.8 Using floating point instructions for integer operations

While there are no problems using integer instructions for moving floating point data, it is not
always safe to use floating point instructions for moving integer data. For example, you may
be tempted to use FLD QWORD PTR [EST] / FSTP QWORD PTR [EDI] to move 8 bytes at a
time. However, this method may fail if the data do not represent valid floating point
numbers. The FLD instruction may generate an exception and it may even change the
value of the data. If you want your code to be compatible with processors that don't have
MMX and XMM registers then you can only use the slower r1Lp and risTp for moving 8
bytes at a time.

However, some floating point instructions can handle integer data without generating
exceptions or modifying data. See page 129 for details.

Converting binary to decimal numbers

The rBLD and FeSTP instructions provide a simple and convenient way of converting
numbers between binary and decimal, but this is not the fastest method.

17.9 Moving blocks of data (All processors)
There are several ways of moving large blocks of data. The most common methods are:

1. REP MOVS instruction.
2. If data are aligned: Read and write in a loop with the largest available register size.

3. If size is constant: inline move instructions.
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4. If data are misaligned: First move as many bytes as required to make the destination
aligned. Then read unaligned and write aligned in a loop with the largest available
register size.

5. If data are misaligned: Read aligned, shift to compensate for misalignment and write
aligned.

6. If the data size is too big for caching, use non-temporal writes to bypass the cache.
Shift to compensate for misalignment, if necessary.

Which of these methods is fastest depends on the microprocessor, the data size and the
alignment. If a large fraction of the CPU time is used for moving data then it is important to
select the fastest method. | will therefore discuss the advantages and disadvantages of
each method here.

The rep MoOvs instruction (1) is a simple solution which is useful when optimizing for code
size rather than for speed. This instruction is implemented as microcode in the CPU. The
microcode implementation may actually use one of the other methods internally. In some
cases it is well optimized, in other cases not. Usually, the rRep Movs instruction has a large
overhead for choosing and setting up the right method. Therefore, it is not optimal for small
blocks of data. For large blocks of data, it may be quite efficient when certain conditions for
alignment etc. are met. These conditions depend on the specific CPU (see page 151). On
Intel Nehalem and later processors, this is sometimes as fast as the other methods when
the memory block is large, and in a few cases it is even faster than the other methods.

Aligned moves with the largest available registers (2) is an efficient method on all
processors. Therefore, it is worthwhile to align big blocks of data by 32 and, if necessary,
pad the data in the end to make the size of each data block a multiple of the register size.

Inlined move instructions (3) is often the fastest method if the size of the data block is
known at compile time, and the alignment is known. Part of the block may be moved in
smaller registers to fit the specific alignment and data size. The loop of move instructions
may be fully rolled out if the size is very small.

Unaligned read and aligned write (4) is fast on most newer processors. Typically, older
processors have slow unaligned reads while newer processors have a better cache
interface that optimizes unaligned read. The unaligned read method is reasonably fast on all
newer processors, and on many processors it is the fastest method.

The aligned read - shift - aligned write method (5) is the fastest method for moving
unaligned data on older processors. On processors with SSE2, use pSRLDQ/PSLLDQ/POR. ON
processors with Supplementary SSE3, use PALIGNR (except on Bobcat, where pPALIGNR is
particularly slow). It is necessary to have 16 different branches for the 16 possible shift
counts. This can be avoided on AMD processors with XOP instructions, by using the vPPERM
instruction, but the unaligned read method (4) may be at least as fast on these processors.

Using non-temporal writes (6) to bypass the cache can be advantageous when moving very
large blocks of data. This is not always faster than the other methods, but it saves the cache
for other purposes. As a rule of thumb, it can be good to use non-temporal writes when
moving data blocks bigger than half the size of the last-level cache.

As you can see, it can be very difficult to choose the optimal method in a given situation.
The best advice | can give for a universal memcpy function, based on my testing, is as
follows:
e On Intel Wolfdale and earlier, Intel Atom, AMD K8 and earlier, and VIA Nano, use
the aligned read - shift - aligned write method (5).
¢ On Intel Nehalem and later, method (4) is up to 33% faster than method (5).
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¢ On AMD K10 and later and Bobcat, use the unaligned read - aligned write method
(4).

e The non-temporal write method (6) can be used for data blocks bigger than half the
size of the largest-level cache.

Another consideration is what size of registers to use for moving data. The size of vector
registers has been doubled from 64 bits to 128 bits with the SSE instruction set, and again
from 128 bits to 256 bits with the AVX instruction set. Further extensions are expected in the
future. Historically, the first processors to support a new register size have often had limited
bandwidth for operations on the larger registers. Some or all of the execution units, physical
registers, data buses, read ports and write ports have had the size of the previous version,
so that an operation on the largest register size must be split into two operations of half the
size. The first processors with SSE would split a 128-bit read into two 64-bit reads; and the
first processors with AVX would split a 256-bit read into two 128-bit reads. Therefore, there
is no increase in bandwidth by using the largest registers on these processors. In some
cases, e.g. AMD Bulldozer, there is significant decrease in performance by using the 256-
bit registers. Typically, it is not advantageous to use a new register size for moving data
until the second generation of processors that support it.

There is a further complication when copying blocks of memory, namely false memory
dependence. Whenever the CPU reads a piece of data from memory, it checks if it overlaps
with any preceding write. If this is the case, then the read must wait for the preceding write
to finish or it must do a store forwarding. Unfortunately, the CPU may not have the time to
check the full physical address, but only the offset within the memory page, i.e. the lower 12
bits of the address. If the lower 12 bits of the read address overlaps with the lower 12 bits of
any unfinished preceding write then the read is delayed. This happens when the source
address relative to the destination address is a little less than a multiple of 4 kbytes. This
false memory dependence can slow down memory copying by a factor of 3 - 4 in the worst
case. The problem can be avoided by copying backwards, from the end to the beginning of
the memory block, in the case where there is a false memory dependence. This is of course
only allowed when no part of the source and the destination memory blocks truly overlaps.

Prefetching

It is sometimes advantageous to prefetch data items before they are needed, and some
manuals recommend this. However, modern processors have automatic prefetching. The
processor hardware is constructed so that it can predict which data addresses will be
needed next when data items are accessed in a linear manner, both forwards and
backwards, and prefetch it automatically. Explicit prefetching is rarely needed. The optimal
prefetch strategy is processor specific. Therefore, it is easier to rely on automatic
prefetching. Explicit prefetching is particularly bad on Intel Ivy Bridge and AMD Jaguar
processors.

Moving data on future processors

We must bear in mind that the code that is written today will run on the processors of
tomorrow. Therefore, it is important to optimize for future processors as explained in the
section "CPU dispatch strategies" in Manual 1: "Optimizing software in C++". Therefore, |
will discuss here which method is likely to be fastest on future processors. First, we can
predict that the AVX (and later) instruction set is likely to be supported on all future x86
processors because this instruction set has significant advantages and it can be
implemented at low costs. Smaller low power processors with 128-bit execution units can
implement a 256-bit instruction as two 128-bit pops. All processors with AVX will have
reasonably fast unaligned read operations because the AVX instructions have few
restrictions on alignment. As the trend goes towards having two read ports, the memory
read operations are unlikely to be a bottleneck, even if unaligned. Therefore, we can expect
that the unaligned read method (method 4) will be fast on future processors.
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Many modern processors have optimized the rer Movs instruction (method 1) to use the
largest available register size and the fastest method, at least in simple cases. But there are
still cases where the rREp MOVs method is slow, for example for certain misalignment cases
and false memory dependence. However, the Rep MOVSs instruction has the advantage that
it will probably use the largest available register size on processors in a more distant future
with registers bigger than 256 bits. As instructions with the expected future register sizes
cannot yet be coded and tested, the rRep Movs instruction is the only way we can write code
today that will take advantage of future extensions to the register size. Therefore, it may be
useful to use the rep MOVS instruction for favorable cases of large aligned memory blocks.

It would be useful if CPU vendors provided information in the CPUID instruction to help
select the optimal code or, alternatively, implemented the best method as microcode in the
REP MOVS instruction.

Examples of the abovementioned methods can be found in the function library at
www.agner.org/optimize/asmlib.zip. See manual 1: "Optimizing software in C++" for a
discussion of automatic CPU dispatching, and for a comparison of available function
libraries.

Processor-specific advice on improving memory access can be found in Intel's "IA-32 Intel
Architecture Optimization Reference Manual" and AMD's "Software Optimization Guide for
AMDG64 Processors".

17.10 Self-modifying code (All processors)

The penalty for executing a piece of code immediately after modifying it is approximately 19
clocks for P1, 31 for PMMX, and 150-300 for PPro, P2, P3, PM. The P4 will purge the entire
trace cache after self-modifying code. The 80486 and earlier processors require a jump
between the modifying and the modified code in order to flush the code cache.

To get permission to modify code in a protected operating system you need to call special
system functions: In 16-bit Windows call changeSelector, in 32-bit and 64-bit Windows call
VirtualProtect and FlushInstructionCache. The trick of putting the code in a data
segment doesn't work in newer systems.

Self-modifying code is not considered good programming practice. It should be used only if
the gain in speed is substantial and the modified code is executed so many times that the
advantage outweighs the penalties for using self-modifying code.

Self-modifying code can be useful for example in a math program where a user-defined
function has to be evaluated many times. The program may contain a small compiler that
converts the function to binary code.

18 Measuring performance

18.1 Testing speed

Many compilers have a profiler which makes it possible to measure how many times each
function in a program is called and how long time it takes. This is very useful for finding any
hot spot in the program. If a particular hot spot is taking a high proportion of the total
execution time then this hot spot should be the target for your optimization efforts.

Many profilers are not very accurate, and certainly not accurate enough for fine-tuning a
small part of the code. The most accurate way of testing the speed of a piece of code is to
use the so-called time stamp counter. This is an internal 64-bit clock counter which can be
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read into EDx : EAX using the instruction rRDTSC (read time stamp counter). The time stamp
counter counts at the CPU clock frequency so that one count equals one clock cycle, which
is the smallest relevant time unit. Some overclocked processors count at a slightly different
frequency.

The time stamp counter is very useful because it can measure how many clock cycles a
piece of code takes. Some processors are able to change the clock frequency in response
to changing workloads. However, when searching for bottlenecks in small pieces of code, it
is more informative to measure clock cycles than to measure microseconds.

The resolution of the time measurement is equal to the value of the clock multiplier (e.g. 11)
on Intel processors with SpeedStep technology. The resolution is one clock cycle on other
processors. The processors with SpeedStep technology have a performance counter for
unhalted core cycles which gives more accurate measurements than the time stamp
counter. Privileged access is hecessary to enable this counter.

On all processors with out-of-order execution, you have to insert Xor EAX,EAX / CPUID
before and after each read of the counter in order to prevent it from executing in parallel
with anything else. cpuiD is a serializing instruction, which means that it flushes the
pipeline and waits for all pending operations to finish before proceeding. This is very useful
for testing purposes.

The biggest problem when counting clock ticks is to avoid interrupts. Protected operating
systems do not allow you to clear the interrupt flag, so you cannot avoid interrupts and task
switches during the test. This makes test results inaccurate and irreproducible. There are
several alternative ways to overcome this problem:

1. Run the test code with a high priority to minimize the risk of interrupts and task
switches.

2. If the piece of code you are testing is not too long then you may repeat the test
several times and assume that the lowest of the clock counts measured represents a
situation where no interrupt has occurred.

3. If the piece of code you are testing takes so long time that interrupts are unavoidable
then you may repeat the test many times and take the average of the clock count
measurements.

4. Make a virtual device driver to clear the interrupt flag.

5. Use an operating system that allows clearing the interrupt flag (e.g. Windows 98
without network, in console mode).

6. Start the test program in real mode using the old DOS operating system.

| have made a series of test programs that use method 1, 2 and possibly 6. These programs
are available at www.agner.org/optimize/testp.zip.

A further complication occurs on processors with multiple cores if a thread can jump from
one core to another. The time stamp counters on different cores are not necessarily
synchronized. This is not a problem when testing small pieces of code if the above
precautions are taken to minimize interrupts. But it can be a problem when measuring
longer time intervals. You may need to lock the process to a single CPU core, for example
with the function setProcessaffinityMask in Windows. This is discussed in the document
"Game Timing and Multicore Processors", Microsoft 2005 http://msdn.microsoft.com/en-
us/library/ee417693.aspx.
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You will soon observe when measuring clock cycles that a piece of code always takes
longer time the first time it is executed where it is not in the cache. Furthermore, it may take
two or three iterations before the branch predictor has adapted to the code. The first
measurement gives the execution time when code and data are not in the cache. The
subsequent measurements give the execution time with the best possible caching.

The alignment effects on the PPro, P2 and P3 processors make time measurements very
difficult on these processors. Assume that you have a piece code and you want to make a
change which you expect to make the code a few clocks faster. The modified code does not
have exactly the same size as the original. This means that the code below the modification
will be aligned differently and the instruction fetch blocks will be different. If instruction fetch
and decoding is a bottleneck, which is often the case on these processors, then the change
in the alignment may make the code several clock cycles faster or slower. The change in
the alignment may actually have a larger effect on the clock count than the modification you
have made. So you may be unable to verify whether the modification in itself makes the
code faster or slower. It can be quite difficult to predict where each instruction fetch block
begins, as explained in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

Other processors do not have serious alignment problems. The P4 does, however, have a
somewhat similar, though less severe, effect. This effect is caused by changes in the
alignment of pops in the trace cache. The time it takes to jump to the least common (but
predicted) branch after a conditional jump instruction may differ by up to two clock cycles on
different alignments if trace cache delivery is the bottleneck. The alignment of pops in the
trace cache lines is difficult to predict.

Most x86 processors also have a set of so-called performance monitor counters which can
count events such as cache misses, misalignments, branch mispredictions, etc. These are
very useful for diagnosing performance problems. The performance monitor counters are
processor-specific. You need a different test setup for each type of CPU.

Details about the performance monitor counters can be found in Intel's "IA-32 Intel
Architecture Software Developer’'s Manual", vol. 3 and in AMD's "BIOS and Kernel
Developer's Guide".

You need privileged access to set up the performance monitor counters. This is done most
conveniently with a device driver. The test programs at www.agner.org/optimize/testp.zip
give access to the performance monitor counters under 32-bit and 64-bit Windows and 16-
bit real mode DOS. These test program support the different kinds of performance monitor
counters in most Intel, AMD and VIA processors.

Intel and AMD are providing profilers that use the performance monitor counters of their
respective processors. Intel's profiler is called Vtune and AMD's profiler is called
CodeAnalyst.

18.2 The pitfalls of unit-testing

If you want to find out which version of a function performs best then it is not sufficient to
measure clock cycles in a small test program that calls the function many times. Such a test
is unlikely to give a realistic measure of cache misses because the test program may use
less memory than the cache size. For example, an isolated test may show that it is
advantageous to roll out a loop while a test where the function is inserted in the final
program shows a large amount of cache misses when the loop is rolled out.

Therefore, it is important not only to count clock cycles when evaluating the performance of

a function, but also to consider how much space it uses in the code cache, data cache and
branch target buffer.
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See the section named "The pitfalls of unit-testing” in manual 1: "Optimizing software in
C++" for further discussion of this problem.

19 Literature

The present manual is part of a series available from www.agner.org/optimize as mentioned
in the introduction on page 4. See manual 3: "The microarchitecture of Intel, AMD and VIA
CPUs" of a list of relevant literature on specific processors.

A lot of other sources also have useful information. These sources are listed in the FAQ for
the newsgroup comp.lang.asm.x86. For other internet resources follow the links from
www.agner.org/optimize.

Some useful books:

R. C. Detmer: Introduction to 80x86 Assembly Language and Computer Architecture, 2'nd
ed. Jones & Bartlett, 2006. Jones & Bartlett, 2006.
Good introduction to assembly programming

J. L. Hennessy and D. A. Patterson: Computer Architecture: A Quantitative Approach, 3'rd
ed. 2002.
Good textbook on computer architecture and microarchitecture

John R. Levine: Linkers and Loaders. Morgan Kaufmann, 2000.
Explains how linkers and loaders work

Henry S. Warren, Jr.: "Hacker's Delight". Addison-Wesley, 2003.
Contains many bit manipulation tricks

20 Copyright notice

This series of five manuals is copyrighted by Agner Fog. Public distribution and mirroring is
not allowed. Non-public distribution to a limited audience for educational purposes is
allowed. The code examples in these manuals can be used without restrictions. A creative
commons license CC-BY-SA shall automatically come into force when | die. See
https://creativecommons.org/licenses/by-sa/4.0/legalcode
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